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1. Introduction

Lazy learning methods defer processing of training data until a query needs
to be answered. This usually involves storing the training data in memory,
and finding relevant data in the database to answer a particular query. This
type of learning is also referred to as memory-based learning. Relevance is
often measured using a distance function, with nearby points having high
relevance. One form of lazy learning finds a set of nearest neighbors and
selects or votes on the predictions made by each of the stored points. This
paper surveys another form of lazy learning, locally weighted learning, that
uses locally weighted training to average, interpolate between, extrapolate
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from, or otherwise combine training data (Vapnik 1992; Bottou and Vapnik
1992; Vapnik and Bottou 1993).

In most learning methods a single global model is used to fit al of the
training data. Since the query to be answered is known during processing of
training data, training query-specific local modelsispossiblein lazy learning.
Local models attempt to fit the training data only in a region around the
location of the query (the query point). Examples of types of local models
include nearest neighbor, weighted average, and locally weighted regression
(Figure 1). Each of these local models combine points near a query point
to estimate the appropriate output. Nearest neighbor local models simply
choose the closest point and use its output value. Weighted average local
models average the outputs of nearby points, inversely weighted by their
distance to the query point. Locally weighted regression fits a surface to
nearby points using a distance weighted regression.

Weighted averages and locally weighted regression will be discussed in
the following sections, and our survey focuses on locally weighted linear
regression. The core of the survey discusses distance functions, smooth-
ing parameters, weighting functions, and local model structures. Among the
lessons learned from research on locally weighted learning are that practical
implementations require dealing with locally inadequate amounts of train-
ing data, regularization of the estimates by deliberate introduction of bias,
methods for predicting prediction quality, filtering of noise and identifying
outliers, automatic tuning of the learning algorithm’s parameters to specific
tasks or data sets, and efficient implementation techniques. Our motivation
for exploring locally weighted |earni ng techniques came from their suitability
for real time online robot learning because of their fast incremental learning
and their avoidance of negative interference between old and new training
data. We provide an example of interference to clarify this point. We briefly
survey published applications of locally weighted learning. A companion
paper (Atkeson et al. 1996) surveys how locally weighted learning can be
used in robot learning and control. This review is augmented by a Web page
(Atkeson 1996).

This review emphasizes a statistical view of learning, in which function
approximation plays the central role. In order to be concrete, the review
focuses on a narrow problem formulation, in which training data consists
of input vectors of specific attribute values and the corresponding output
values. Both the input and output values are assumed to be continuous.
Alternative approachesfor this problem formulation include other statistical
nonparametric regression techniques, multi-layer sigmoidal neural networks,
radial basis functions, regression trees, projection pursuit regression, and
global regression techniques. The discussion section (Section 16) argues that
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Figure 1. Fits using different types of local models for three and five data points.
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locally weighted learning can be applied in a much broader context. Global
learning methods can often be improved by localizing them using locally
weighted training criteria (Vapnik 1992; Bottou and Vapnik 1992; Vapnik
and Bottou 1993). Although this survey emphasizes regression applications
(real valued outputs), the discussion section outlines how these techniques
have been applied in classification (discrete outputs). We conclude with a
short discussion of future research directions.

Notation

In this paper scalars are represented by italic lower case letters (y). Column
vectors are represented as boldface lower case letters (x) and row vectors are
represented as the column vectors transposed (x'). Matrices are represented
by bold face upper case letters (X).

2. Distance Weighted Averaging

To illustrate how locally weighted learning using a distance function is
applied, we will first consider a simple example, distance weighted aver-
aging. Thiswill turn out to be aform of locally weighted regression in which
thelocal model is aconstant. A prediction g can be based on an average of n
training values {y1, y2, .. ., Yn }:

> Yi

n

y= D

This estimate minimizes a criterion:

C=>(5—u) 2
In the case where the training values {y1, v2, ..., y,} are taken under
different conditions {x1, X2, ..., X, }, it makes sense to emphasize data that

issimilar to the query q and deemphasize dissimilar data, rather than treat all
the training data equally. We can do this in two equivalent ways. weighting
the data directly or weighting the error criterion used to choose 3.

2.1. Weighting the Data Directly

Weighting the data can be viewed as replicating relevant instances and
discarding irrelevant instances. In our case an instance is represented as a
data point (X, y). Relevance is measured by calculating a distance d(x;, q)
between the query point g and each data point input vector x;. A typical
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distance function is the Euclidean distance (x; is the ith input vector, while
X; isthe jth component of the vector x):

de(x,0) = [0 — ;)2 =/(x — )T (x - ) 3
J

A weighting function or kernel function K( ) isused to calculate aweight for
that data point from the distance. A typical weighting function is a Gaussian
(Figure 8):

2

K(d)=e™* (4)
The weight is then used in aweighted average:
o 2y (d(Xi, a))
99 = K, )
Note that the estimate ¢ depends on the location of the query point q.

()

2.2. \Weighting the Error Criterion

We are trying to find the best estimate for the outputs y;, using alocal model
that is a constant, 4. Distance weighting the error criterion corresponds to
requiring the local model to fit nearby points well, with less concern for
distant points:

n
C(a) = Y17 — vi)* K (d(x;, a))] (6)
=1

The best estimate ¢(q) will minimize the cost C(q). For that value of 4,
%—g = 0. Thisis achieved by the ¢ given in Equation 5, and so in this case
weighting the error criterion and weighting the data are equivalent. Note that
both the criterion C(q) and the estimate y(q) depend on the location of the
query point g.

This process has a physical interpretation. Figures 2 and 3 show the data
points (black dots), which arefixed in space, pulling on ahorizontal line (the
constant model) with springs. The strength of the springs are equal in the
unweighted case, and the position of the horizontal line minimizes the sum
of the stored energy in the springs (Equation 2). We will ignore a factor of
% in al our energy calculations to simplify notation. In the weighted case,
the springs are not equal, and the spring constant of each spring is given by
K(d(x;, g)). The stored energy in the springs in this case is C' of Equation 6,
which is minimized by the physical process. Note that the locally weighted
average emphasizes points close to the query point, and produces an answer
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Figure 2. Unweighted averaging using springs.
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Figure 3. Locally weighted averaging using springs.

(the height of the horizontal line) that is closer to the height of points near the
query point than the unweighted case.

2.3. The Distance Weighted Averaging Literature

In statistics the approach of fitting constants using alocally weighted training
criterion isknown askernel regressionand hasavast literature (Hardle 1990;
Wand and Jones 1994). Nadaraya (1964) and Watson (1964) proposed using
aweighted average of aset of nearest neighborsfor regression. The approach
was also independently reinvented in computer graphics (Shepard, 1968).
Specht (1991) describes a memory-based neural network approach based on
a probabilistic model that motivates using weighted averaging as the local
model for regression. Connell and Utgoff (1987), Kibler et al. (1989) and Aha
(1990) have applied weighted averaging to artificial intelligence problems.
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3. Locally Weighted Regression

In locally weighted regression (LWR) local models are fit to nearby data.
As described later in this section, this can be derived by either weighting
the training criterion for the local model (in the general case) or by directly
weighting the data (in the case that the local model is linear in the unknown
parameters). LWR is derived from standard regression procedures for global
models. We will start our exploration of LWR by reviewing regression
proceduresfor global models.

3.1. Nonlinear Local Models

3.1.1. Nonlinear Global Models
A general global model can be trained to minimize the following unweighted
training criterion:

where the y; are the output values corresponding to the input vectors Xx;,
B is the parameter vector for the nonlinear model ¢; = f(x;, ), and L(y;,
y;) is a general loss function for predicting ; when the training data is ;.
For example, if the model were aneural net, then  would be a vector of the
synaptic weights. Often the least squarescriterion isused for thelossfunction
(L@, vi) = (5 —:)?), leading to the training criterion:

C= Z(f(xi,ﬁ) —yi)? (8)

Sometimes no values of the parameters of a global model can provide a
good approximation of the true function. There are two approaches to this
problem. First, we could use a larger, more complex global model and hope
that it can approximate the data sufficiently. The second approach, which we
discuss here, is to fit the simple model to local patches instead of the whole
region of interest.

3.1.2. ATraining Criterion For Nonlinear Local Models
The data set can be tailored to the query point by emphasizing nearby points
in the regression. We can do this by weighting the training criterion:

where K( ) is the weighting or kernel function and d(x;,q) is the distance
between the data point x; and the query q. Using this training criterion,
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f(x, 4(q)) now becomes alocal model, and can have a different set of para-
meters 3(q) for each query point g.

3.2. Linear Local Models

Given that we are using local models, it seems advantageous to keep them
simple, and to keep the training criterion ssimple as well. This leads us to
explore local models that are linear in the unknown parameters, and to use
theleast squarestraining criterion. Wederiveleast squarestraining algorithms
for linear local models from regression procedures for linear global models.

3.2.1. Linear Global Models
A global model that is linear in the parameters 3 can be expressed as (Myers
(1990):

X; 8=y (10)
Inwhat followswe will assumethat the constant 1 has been appended to all

the input vectors x; to include a constant term in the regression. The training
examples can be collected in a matrix equation:

Xp=y (11)
where X isamatrix whose ith row isx! and y is a vector whose ith element
isy;. Thus, the dimensionality of X isn x d where n is the number of data
pointsand d is the dimensionality of x. Estimating the parameters 3 using an
unwei ghted regression minimizes the criterion

C=> (- (12)
by solving the normal equations
(XTX)p = XTy (13)
for j:

B =(XTX) Xy (14)

Inverting thematrix X "X isnot the numerically best way to solvethe normal
equations from the point of view of efficiency or accuracy, and usually other
matrix techniques are used to solve Equation 13 (Press et al. 1988).

3.2.2. Weighting the Criterion: A Physical Interpretation
Infitting aline or planeto a set of points, unweighted regression gives distant
points equal influence with nearby points on the ultimate answer to the query,
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Figure 4. Unweighted springs.

for equally spaced data. The linear local model can be specialized to the
query by emphasizing nearby points. As with the distance weighted average
example we can either weight the error criterion that is minimized, or weight
the data directly. The two approaches are equivalent for planar local models.
Weighting the criterion is done in the following way

C(a) = Y_[(x] 8 — y:) 2K (d(x;, 9))] (15)

7

We again have a physical interpretation for C'(q) of Equation 15. Much
as thin plate splines minimize a bending energy of a plate and the energy of
the constraints pulling on the plate, locally weighted regression can also be
interpreted as a physical process. In LWR with aplanar local model, the line
inFigures2 and 3 can now rotate aswell astranslate. The springsareforced to
remain oriented vertically, rather than move to the smallest distance between
the data points and the line. Figure 4 shows the fit (the line) produced by
equally strong springsto a set of data points (the black dots), minimizing the
criterion of Equation 12. Figure 5 showswhat happensto the fit asthe springs
nearer to the query point are strengthened and the springs further away are
weakened. The strengths of the springs are given by K (d(x;, g)), and the fit
minimizes the criterion of Equation 15.

3.2.3. Direct Data Weighting
Our version of directly weighting the data involves the following steps. For
computational and analytical ssmplicity the origin of the input data is first
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Figure 5. Weighted springs.

shifted by subtracting the query point from each data point (making the query
pointq =(0,...,0, 1)T, where the 1 is appended for the constant term in
the regression). A distance is calculated from each of the stored data points
to the query point . The weight for each stored data point is the square root
of the kernel function used in Equation 15, to simplify notation later:

wi = /K (d(xi,q)) (16)

Eachrow ¢ of X andy ismultiplied by the corresponding weight w; creating
new variables Z and v. This can be done using matrix notation by creating
adiagonal matrix W with diagonal elements W;; = w; and zeros elsewhere
and multiplying W times the original variables.

Z; = w;X; (17)

Z=WX (18)
and

v; = Wiy (19)

v=Wy (20)

Equation 13 is solved for 5 using the new variables:
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(2'2)8=2"v (21)

Formally, this gives us an estimator of the form

g@) =0q"(2'2)"'Z"v (22)

3.3. The Relationship of Kernel Regression and Locally Weighted
Regression

For data distributed on a regular grid away from any boundary locally
weighted regression and kernel regression are equivaent (Lejeune 1985;
Miuller 1987). However, for irregular data distributions there is a significant
difference, and LWR has many advantages over kernel regression (Hastie
and Loader 1993; Jones et al. 1994). LWR with aplanar local model is often
preferred over kernel smoothing because it exactly reproduces a line (with
any data distribution). The failure to reproduce aline, or any function used
to generate the training data, indicates the bias of a function approximation
method. LWR methods with a planar local model will fail to reproduce a
quadratic function, reflecting the bias due to the planar local model. LWR
methods with a quadratic local model will fail to reproduce a cubic function,
and so on.

3.4. TheLocally Weighted Regression Literature

Cleveland and Loader (1994a, c), Fan (1995) and Fan and Gijbels (1996)
review the history of locally weighted regression and discuss current research
trends. Barnhill (1977) and Sabin (1980) survey the use of distance weighted
nearest neighbor interpolators to fit surfacesto arbitrarily spaced points, and
Eubank (1988) surveystheir use in nonparametric regression. Lancaster and
Salkauskas (1986) refer to nearest neighbor approaches as “moving least
squares’ and survey their use in fitting surfaces to data. Hardle (1990) sur-
veys kernel and LWR approaches to nonparametric regression. Farmer and
Sidorowich (1987, 19884, b) survey the use of nearest neighbor and local
model approachesin modeling chaotic dynamic systems.

Local models (often polynomials) have been used for over a century to
smooth regularly sampled time series and interpolate and extrapolate from
dataarranged on rectangular grids. Crain and Bhattacharyya(1967), Falconer
(1971) and McLain (1974) suggested using a weighted regression on irreg-
ularly spaced data to fit a local polynomial model at each point a function
evaluation was desired. All of the available data points were used. Each data
point was weighted by a function of its distance to the desired point in the
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regression. Many authors have suggested fitting a polynomial surface only
to nearby points also using distance weighted regression (Mclntyre et al.
1968; Pelto et al. 1968; Legg and Brent 1969; Palmer 1969; Walters 1969;
Lodwick and Whittle 1970; Stone 1975, 1977; Benedetti 1977; Tukey 1977;
Franke and Nielson 1980; Friedman 1984) Cleveland (1979) proposed using
robust regression proceduresto eliminate outlying or erroneous pointsin the
regression process. Programsimplementing arefined version of this approach
(LOCFIT and LOESS) areavailabledirectly and al so aspart of the S+ package
(Cleveland et al. 1992; Cleveland and Loader 19944, b, ¢). Katkovnik (1979)
also developed arobust locally weighted smoothing procedure. Cleveland et
al. (1988) analyzethestatistical propertiesof the LOESSalgorithmand Cleve-
land and Devlin (1988) and Cleveland et a. (1993) show examplesof its use.
Stone (1977), Devroye (1981), Lancaster (1979), Lancaster and Salkauskas
(1981), Cheng (1984), Li (1984), Tsybakov (1986), and Farwig (1987) pro-
vide analyses of LWR approaches. Stone (1980, 1982) shows that LWR has
an optimal rate of convergence in a minimax sense. Fan (1992) shows that
local linear regression smoothers are the best smoothers, in that they are the
asymptotic minimax linear smoother and have a high asymptotic efficiency
(which can be 100% with a suitable choice of kernel and bandwidth) among
all possible linear smoothers, including those produced by kernel, orthogonal
series, and spline methods, when the unknown regression function is in the
classof functions having bounded second derivatives. Fan (1993) extendsthis
result to show that LWR has a high minimax efficiency among all possible
estimators, including nonlinear smoothers such as median regression. Fan
(1992), Fan and Gijbels (1992), Hastie and Loader (1993) and Jones €t al.
(1994) show that LWR handles a wide range of data distributions and avoids
boundary and cluster effects. Ruppert and Wand (1994) derive asymptotic
bias and variance formulas for multivariate LWR, while Cleveland and
Loader (1994c) argue that asymptotic results have limited practical rele-
vance. Fan and Gijbels (1992) explorethe use of avariable bandwidth locally
weighted regression. Vapnik and Bottou (1993) give error bounds for local
learning algorithms.

Locally weighted regression was introduced into the domain of machine
learning and robot learning by Atkeson (Atkeson and Reinkensmeyer 1988,
1989; Atkeson 1990, 1992), who also explored techniques for detecting
irrelevant features, and Zografski (Zografski 1989, 1991, 1992; Zografski
and Durrani 1995). Atkeson and Schaal (1995) explore locally weighted
learning from the point of view of neural networks. Dietterich et a. (1994)
report on a recent workshop on memory-based learning, including locally
weighted learning.
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4, Distance Functions

Locally weighted learning is critically dependent on the distance function.
There are many different approachesto defining a distance function, and this
section briefly surveysthem. Distance functionsin locally weighted learning
do not need to satisfy the formal mathematical requirements for a distance
metric. The relative importance of the input dimensions in generating the
distance measurement depends on how the inputs are scaled (i.e., how much
they are stretched or sguashed). We use the term scaling for this purpose
having reserved the term weight for the contribution of individual points (not
dimensions) in aregression. Werefer to the scaling factors asm; in this paper.
There are many ways to define and use distance functions (Scott 1992):

e Global distance functions. The same distance function is used at all
parts of the input space.

e Query-based local distance functions: The form of d() or the distance
function parameters are set on each query by an optimization process
that typically minimizes cross validation error or arelated criterion. This
approach is referred to as a uniform metric by Stanfill (1987) and is
discussed in Stanfill and Waltz (1986), Hastie and Tibshirani (1994) and
Friedman (1994).

e Point-based local distance functions. Each stored data point has
associated with it a distance function and the values of corresponding
parameters. The training criterion uses a different d;( ) for each point x;:

C(a) =Y _[(f (i, B) — :)°K (di(x;, )] (23)

i

Thed; () can be selected either by adirect computation or by minimizing
cross validation error. Fregquently, the d;( ) are chosen in advance of the
queries and are stored with the data points. This approach is referred to
as a variable metric by Stanfill (1987). For classifiers, one version of a
point-based local distancefunctionisto haveadifferent distancefunction
for each class (Waltz 1987; Aha and McNulty 1989; Aha 1989, 1990).
Ahaand Goldstone (1990, 1992) explore the use of point-based distance
functions by human subjects.

Distance functions can be asymmetric and nonlinear, so that a distance
along a particular dimension can depend on whether the query point’s value
for the dimension is larger or smaller than the stored point’s value for that
dimension (Medin and Shoben 1988). The distance along a dimension can
also depend on the values being compared (Nosofsky et al. 1989).
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4.1. Feature Scaling

Altering the distance function can serve two purposes. If the feature scaling
factorsm; areall nonzero, theinput spaceiswarped or distorted, which might
lead to more accurate predictions. If some of the scaling factors are set to zero,
those dimensions are ignored by the distance function, and the local model
becomes global in those directions. Zeroing feature scaling factors can be
used as atool to combat the curse of dimensionality by reducing the locality
of the function approximation processin this way.

Note that a feature scaling factor of zero does not mean the local model
ignores that feature in locally weighted learning. Instead, all points aligned
along that direction get the same weight, and the feature can affect the output
of the local model. For example, fitting a global model using all featuresis
equivalent to setting all feature scaling factors to zero and fitting the same
model as alocal model. Local model feature selection is a separate process
from distance function feature scaling. Ignoring features using ridge regres-
sion, dimensionality reduction of the entire modeling process, and algorithms
for feature scaling and selection are discussed in later sections.

Stanfill and Waltz (1986) describe avariant of feature selection (* predictor
restriction”) in which the scaling factor for a feature becomes so large that
any difference from the query in that dimension causes the training point to
be ignored. They also describe using an initial prediction of the output in
an augmented distance function to select training data with similar or equal
outputs (“goal restriction”) (Jabbour et al 1978).

4.2. Distance Functions For Continuous Inputs

The functions discussed in this section are especially appropriate for ordered
(vs. categorical, symbolic, or nominal) input values, which are either contin-
uous or an ordered set of discrete values.

e Unweighted Euclidean distance:

de(x,a) = 3062 =/x—a)T(x—q) (24

J

e Diagonally weighted Euclidean distance:

dn(,Q) =[S (m5(% = 6;))2 = /(X — ) TMTM(x — )
J
= dg(Mx,MQq) (25)
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where m; is the feature scaling factor for the jth dimension and M is a
diagona matrix with M ;; = m;.
¢ Fully weighted Euclidean distance:

dai(%,0) = /(x— Q) TMTM(x — q) = de(Mx,Mq)  (26)

where M is no longer diagonal but can be arbitrary. Thisis also known
as the Mahalanobis distance (Tou and Gonzalez 1974; Weisberg 1985).
e Unweighted L, norm (Minkowski metric):

dp(X,q) = (Z IX; — q; |p> ! (27)

e Diagonally weighted and fully weighted L, norm: The weighted L,

normisd,(Mx, Mq).

A diagonal distance function matrix M (1 coefficient for each dimension)
can make a radially symmetric scaling function into an axis parallel ellipse
(Figure 6 showsellipseswith theaxes of symmetry aligned with the coordinate
axes). Figure 7 shows an example of how a full distance function matrix
M with cross terms can arbitrarily orient the ellipse (Ruppert and Wand
1994; Wand and Jones 1993). Cleveland and Grosse (1991), Cleveland et
a. (1992) and Cleveland (1993a) point out that for distance functions with
zero coefficients (m; = 0, an entire column of M is zero, or M is singular),
the model is global in the corresponding directions. They refer to this as a
conditionally parametric model.

Fukunaga (1990), James (1985) and Tou and Gonzalez (1974) describe
how to choose a distance function matrix to maximize the ratio of the
variance between classes to the variance of all the cases in classification.
Mohri and Tanaka (1994) extend this approach to symbolic input values. This
approach uses an eigenval ue/eigenvector decomposition and can help distin-
guish relevant attributes from irrelevant attributes and filter out noisy data.
This approach is localized by Hastie and Tibshirani (1994). Distance func-
tions for symbolic inputs have been developed and are discussed in Atkeson
(1996).

5. Smoothing Parameters
A smoothing or bandwidth parameter / defines the scale or range over which

generdization is performed. There are several ways to use this parameter
(Scott 1992; Cleveland and Loader 1994c):
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Weighting function (gaussian) mll=1 ml2=m21=0 m22=0.5

Figure 6. Contours of constant distance from the center with adiagonal M matrix.

Weighting function (gaussian) mll=l ml12=m21=0.3 m22=0.5

N

Figure 7. Contours of a constant distance from the center in which the M matrix has off-
diagonal elements.

¢ Fixed bandwidth selection: i isaconstant value (Fan and Marron 1993),
and thereforevolumes of datawith constant size and shapeareused. Inthis
case h can appear implicitly in the distance function as the determinant
of M for fully weighted distance functions (h = [M]) or the magnitude of
the vector m in diagonally weighted distance functions (h = [m[) and/or

explicitly in the weighting function:
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K <w> 28)

These parameters, although redundant in the explicit case, provide a
convenient way to adjust the radius of the weighting function. The redun-
dancy can be eliminated by requiring the determinant of the scaling factor
matrix to be one (M| = 1), or fixing some element of M.

e Nearest neighbor bandwidth selection: 4 is set to be the distance to
the kth nearest data point (Stone 1977; Cleveland 1979; Farmer and
Sidorowich 1988a, b; Townshend 1992; Hastie and Loader 1993; Fan
and Gijbels 1994; Ge et al. 1994; Nass et a. 1990; Naes and Isaksson
1992; Wang et al. 1994; Cleveland and L oader 1994b). The data volume
increases and decreases in size according to the density of nearby data.
In this case changes in scale of the distance function are canceled by
corresponding changesin h, giving a scale invariant weighting pattern
to the data. However, h will not cancel changes in distance function
coefficientsthat alter the shape of the weighting function, and the identity
of the kth neighbor can change with distance function shape changes.

¢ Global bandwidth selection: h isset globally by an optimization process
that typically minimizes cross validation error over all the data.

e Query-based local bandwidth selection: h is set on each query by an
optimization process that typically minimizes cross validation error or a
related criterion (Vapnik 1992).

e Point-based local bandwidth selection: Each stored data point has asso-
ciated with it a bandwidth k. The weighted criterion uses a different h;
for each point x;:

o) = X [ - wr (2228 29
The h; can be set either by a direct computation or by an optimization
process that typically minimizes cross validation error or a related cri-
terion. Typically, the h; are computed in advance of the queries and are
stored with the data points.

Fan and Marron (1994b) argue that a fixed bandwidth is easy to interpret,
but of limited use. Cleveland and Loader (1994a) argue in favor of nearest
neighbor smoothing over fixed bandwidth smoothing. A fixed bandwidth and
a weighting function that goes to zero at a finite distance can have large
variance in regions of low data density. This problem is present at edges
or between data clusters and gets worse in higher dimensions. In general,
fixed bandwidth selection has much larger changes in variance than nearest
neighbor bandwidth selection. A fixed bandwidth smoother can also not have
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any datawithinitsspan, leading to undefined estimates (Cleveland and L oader
1994b). Fan and Marron (1994b) describe three reasons to use variable local
bandwidths: to adapt to the data distribution, to adapt for different levels
of noise (heteroscedasticity), and to adapt to changes in the smoothness
or curvature of the function. Fan and Gijbels (1992) argue for point-based
in favor of query-based local bandwidth selection, explaining that having
a bandwidth associated with each data point will alow rapid or asymmetric
changesin the behavior of the datato be accommodated. Section 12 discusses
global and local tuning of bandwidths.

6. Weighting Functions

The requirements on a weighting function (also known as a kernel function)
are straightforward (Gasser and Muller 1979; Cleveland and Loader 1994c;
Fedorov et al. 1993). The maximum value of the weighting function should
be at zero distance, and the function should decay smoothly as the distance
increases. Discontinuities in weighting functions lead to discontinuities in
the predictions, since training points cross the discontinuity as the query
changes. In general, the smoother the weight function, the smoother the
estimated function. Weights that go to infinity when a query equals a stored
data point allow exact interpolation of the stored data. Finite weights lead to
smoothing of the data. Weight functions that go to zero at a finite distance
alow faster implementations, since points further from the query than that
distance can be ignored with no error. As mentioned previously, kernelswith
a fixed finite radius raise the possibility of not having enough or any points
within the non-zero area, a possibility that must be handled by the locally
weighted learning system. It isnot necessary to normalize the kernel function,
and the kernel function does not need to be unimodal. The kernel function
should always be non-negative, since a negative value would lead to the
training process increasing training error in order to decrease the training
criterion. The weights (i.e., the square root of the kernel function) can be
positive or negative. We have only used non-negative weights. Some of the
kernel functions discussed in this section are shown in Figure 8.

A simple weighting function just raises the distance to a negative power
(Shepard 1968; Atkeson 1992; Ruprecht et a. 1994; Ruprecht and Muller
19944a). The magnitude of the power determines how local the regression will
be (i.e., the rate of dropoff of the weights with distance).

(30)
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Figure 8. Some of the kernel shapes described in the text.

Thistype of weighting function goesto infinity asthe query point approaches
astored datapoint and forcesthelocally weighted regression to exactly match
that stored point. If the datais noisy, exact interpolation is not desirable, and
aweighting scheme with limited magnitude is desired. The inverse distance
(Wolberg 1990)

1

Kd) =175

(31)

can be used to approximate functions like Equation 30 and the quadratic
hyperbolakernel 1/(h? + d?) with awell defined value at d = 0.

Another smoothing weight function isaGaussian kernel (Deheuvels 1977,
Wand and Schucany 1990; Schaal and Atkeson 1994):

K(d) = exp(—d®) (32)
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Thiskernel also hasinfinite extent. A related kernel isthe exponential kernel,
which has been used in psychological models (Aha and Goldstone 1992):

K (d) = exp[—|d]] (33)

These kernels have infinite extent, and can be truncated when they become
smaller than a threshold value to ignore data further from a particular radius
from the query.

The quadratic kernel, aso known as the Epanechnikov kernel and the
Bartlett-Priestley kernel, is (Epanechnikov 1969; Lejeune 1984; Altman
1992; Hastie and Loader 1993; Fan and Gijbels 1995a, b; Fan and Hall
1994):

[ (1—=d?) if|d <1
K(d) = { 0 otherwise

This kernel has finite extent and ignores data further than a radius of 1 from
the query when building the local model. Fan and Marron (1993) and Muller
(1993) arguethat thiskernel functionisoptimal in amean squared error sense.
However, there isadiscontinuity in the derivative at d = 1, which makesthis
kernel less attractivein real applications and analytical treatments.

The tricube kernel is used by Cleveland (1979), Cleveland and Devlin
(1988), Diebold and Nason (1990), LeBaron (1990), Nass et a. (1990), Naes
and Isaksson (1992), Wang et al. (1994) and Ge et al. (1994):

(34)

_ [ (@—]dP)®ifld] <1
K(d) = { 0 otherwise

Thiskernel aso hasfinite extent and a continuousfirst and second derivative,
which means the first and second derivative of the prediction will aso be
continuous.

For comparison, the uniform weighting kernel (or boxcar weighting
kernel) is used by Stone (1977), Friedman (1984), Tsybakov (1986) and
Muller (1987):

(35)

_[1lif|d <1
K(d) = { 0 otherwise

and the triangular kernel (used in locally weighted median regression) is:

(36)

_[1—|d| if|ld| <1
K(d) = { 0 otherwise
A variant of the triangular kernel is the following (Franke and Nielson 1980;
Ruprecht and Muller 1993, 1994, Ruprecht et al. 1994):

(37)
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K(d):{l——d@if|d|<1

. (38)
0 otherwise

In general new kernel functions can be created by raising these kernel
functions to a power. For example, the biquadratic kernel is the square of
the quadratic kernel. The power can be non-integral, and also less than one.
The triangular, biguadratic, and tricube kernels form a family. Ruprecht and
Miuller (1994b) generalize the distance function to a point-set metric.

In our view, thereisno clear evidencethat the choice of weighting function
is critical (Scott 1992; Cleveland and Loader 1994a, c) However, there are
examples where one can show differences (Fedorov et al. 1993). Cleveland
and Loader (1994b) criticize theuniform kernel for similar reasonsasare used
in signal processing and spectrum estimation. Optimal kernels are discussed
by Gasser and Muller (1984), Gasser et al. (1985), Scott (1992), Blyth (1993),
Fedorov et al. (1993). Finite extent of the kernel function is useful, but other
than that, the literature and our own work have not noted any substantial
empirical difference in most cases.

7. Local Model Structures

So far we have discussed only a few kinds of local models, constant and
linear local models. There are no limits on what model structure can be used
as aloca model. Models that are linear in the unknown parameters, such
as local polynomials, train faster than more general models. Since a major
component of the lookup cost is the training cost, this is an important ben-
efit. Cleveland and Devlin (1988), Atkeson (1992), Farmer and Sidorowich
(198843, b), Cleveland and L oader (1994), Naeset al. (1990), Nassand | saksson
(1992) and Wang et al. (1994) have applied local quadratic and cubic models,
which are analyzed by Ruppert and Wand (1994). Higher order polynomials
reduce the bias but increase the variance of the estimates. Locally constant
models handle flat regions well, while quadratics and cubics handle areas of
high curvature such as peaks and valleys well.

Cleveland and L oader (19944, c¢) present an approach to blending polyno-
mial models, where a non-integral model order indicates a weighted blend
between two integral model orders. They use cross validation to optimize the
local model order on each query.
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8. Regularization, Insufficient Data, and Prediction Bias

To uniquely interpolate between and extrapolate from the training data we
must express a preference or learning bias. In function approximation that
preferenceistypically expressed as a smoothnesscriterion to optimize. In the
case of locally weighted learning the smoothness constraint is not explicit.
However, there are severa fit parameters that affect the smoothness of the
predicted outputs. The smoothing bandwidth is an important control knob,
as is a ridge regression parameter, to be described in the next section. The
order of the local model also can serve as a smoothing parameter. The shape
of the distance and weighting functions play a secondary role in smoothing
the estimates, although in general the number of derivatives with respect to
x of K(d(x,q)) that exist determine the order of smoothness of the predicted
outputs. There is an important link between smoothness control and overfit-
ting. Seifert and Gasser (1994) explore a variety of approaches to handling
insufficient datain local regression.

8.1. RidgeRegression

A potential problem is that the data points can be distributed in such a way
asto make the regression matrix Z"Z in Equation 21 nearly singular. If there
are not enough nearby points with non-zero weights in all directions, there
are not enough different equations to solve for the unknown parameters (.
Ridge regression (Draper and Smith 1981) is used to prevent problems due
to a singular data matrix. The following equation, instead of Equation 21, is
solved for g:

(Z'Z+MNB=2"v+Ap (39)

where A is adiagonal matrix with small positive diagonal elements \2:

0.0
0.0

=1 . . . . (40)
0 0 ... )\

n

and /3 isan apriori estimate or expectation of what the local model parameters
will be (often 3 is taken to be a vector of all zeros). This is equivalent to
adding n extrarows to Z, each having a single non-zero element, \;, in the
ith column. The equation Z 3 = v becomes:
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Z \
g = _ (41)
A O -~ 0 161
0 X--- 0 X232
_OO"')\n_ _>\an_

Adding additional rows can be viewed as adding “fake” data, which, in the
absence of sufficient real data, biases the parameter estimates to 3 (Draper
and Smith 1981). Another view of ridge regression parameters is that they
are the Bayesian assumptions about the apriori distributions of the estimated
parameters (Seber 1977). As described in Section 12 on tuning, optimizing
the ridge regression parameters using cross validation can identify irrelevant
dimensions. These techniques also help combat overfitting.

8.2. Dimensionality Reduction

Principal components analysis (PCA) can also be used globally to eliminate
directionsin which thereisno data (Wettschereck 1994). However, it israrely
the case that there is absolutely no data in a particular direction. A closely
related technique, the singular value decomposition (SVD), istypically used
inlocally weighted regressionto perform dimensionality reduction. Cleveland
and Grosse (1991) compute the inverse of Z7Z using the singular value
decomposition, and then set small singular values to zero in the calculated
inverse. Thiscorrespondsto eliminating those directionsfromthelocal model.
Principal components analysis can aso be donelocally on the weighted data,
either around each stored data point, or in responseto aquery. Directions can
be eliminated in either a hard fashion, explicitly setting the corresponding
parameters to zero, or in a soft fashion (such as performing ridge regression
in the coordinate system defined by the PCA or SVD).

In Bregler and Omohundro (1994) an interesting locally weighted learn-
ing approach is presented for identifying low-dimensional submanifolds on
which dataislying. In Figure 9 the space hastwo dimensions, and yet each dot
is locally embedded on a one dimensional curve. Bregler and Omohundro’'s
method useslocally weighted principal component analysis (which performs
asingular value decomposition of the Z matrix from Equation 18) to identify
local manifolds. Thisisauseful analysistool for identifying local dependen-
ciesbetween variablesin adataset. But it also hasimportant consequencesfor
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Figure 9. 2-dimensiona input points scattered on a 1-dimensional non-linear manifold.

developing alocal distance function: the principal component matrix reveals
the directions in input space for which there is no data support.

These approaches only consider the input space (the space spanned by X;).
It is often important to also consider the outputs (the y;) when performing
distance function or smoothing parameter optimization. The outputs can pro-
vide more opportunities for dimensionality reduction if they are flat in some
direction, or can be predicted by alocal model. An alternative perspective
is to consider the conditional probability p(y|x). Perhaps one could do local
principal componentsanalysisin the joint density space p(x, y) and eliminate
the input directions that contribute least to predicting the outputs. A potential
problem with dimensionality reduction in general isthat the new dimensions,
if not aligned with the previous dimensions, are not necessarily meaningful.
Our focus is on reducing prediction error, ignoring comprehensibility of the
local models.

9. Assessingthe Predictions

An important aspect of locally weighted learning is that it is possible to
estimatethe prediction error, and derive confidencebounds on the predictions.
Bottou and Vapnik (1992; Vapnik and Bottou, 1993) analyze confidence
intervals for locally weighted classifiers. We start our analysis of locally
weighted regression by pointing out that LWR is an estimator that islinear in
the output datay (using Equations 20, 22, and 39):

9(a) =9"(Z'Z+2) 2 Wy = sy = > si(Qys (42)
1=1

The vector sy, also written as s(q), will be useful for calculating the bias and
variance of locally weighted learning.
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9.1. Estimating the Variance

To calculate the variance of a prediction we assume the training data came
from a sampling process that measures output values with additive random
noise:

yi = f(X;) + € (43)

where the ¢; are independent, have zero mean, and have variance o(x;).
Under the assumption that o%(x;) = o (o is a constant) and that the linear
model correctly models the structure of the data, linear regression generates
an unbiased estimate of the regression parameters. Additionally, if theerror is
normally distributed, e; = N(0, o), the regression estimate becomes the best
linear unbiased estimate in the maximum likelihood sense. However, unless
stated explicitly, in this paper we will avoid any distributional assumption on
the form of the noise.

Given thismodel of the additive noise (and dropping the assumption that a
linear model correctly models the structure of the data), the expectation and
variance of the estimate ¢ is (sis from Equation 42):

E(§(0)) = E(sqy) = SqE(Y) = >_si(a) £ (%) (44)

Var(j(a)) = Elj(a) — E@(a))* = 3_ s (@)o*(x) (45)

One way to derive confidence intervals for the predictions from locally
weighted learning is to assume a locally constant variance 0%(q) at the pre-
diction point g and to use Equation 45. This equation has to be modified to
reflect both the additive noise in sampling at the new point (¢2(q)) and the
prediction error of the estimator (o%(q) Sf, Sq)-

Var(ynew(4)) = 0*(a) + o%(Q)SgSq (46)

Thisexpression of the prediction intervalsisindependent of the output values
of thetraining datay;, and reflects how well the datais distributed in the input
space. However, the variance only reflects the difference between the predic-
tion and the mean prediction, and not the difference between the prediction
and the true value, which requires knowledge of the predictor’s bias. Only
when the local model structureis correct will the bias be zero.

To conveniently derive an estimate of o-2(x) we will define some addition-
al quantities in terms of the weighted variables. A locally weighted linear
regression centered at apoint g produceslocal model parameters 5(q). It also
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produces errors (residuals) at all training points. The weighted residual r;(q)
isgiven by (v; is defined in Equation 19):

ri(a) =z (a)8(a) — vi(q) (47
Thetraining criteria, whichisthe weighted sum of the squared errors, isgiven
by:

=>_ri(a) (48)

A reasonable estimator for the local value of the noise varianceis

2 2ri@ _ C(g)
o) = nwr(d)  nLwr() “9)

where n wr is amodified measure of how many data points there are:

nLwr(d Z ZK< X )> (50)

In analogy to unweighted regression (Myers 1990), we can reduce the bias
of the estimate 62(q)) by taking into account the number of parametersin the
locally weighted regression:

A20N ZTE(Q)
o= nLwr(d) — pLwr(d) G

where p wr is a measure of the local number of free parametersin the local
model:

pLwr(d Z wiz} (27Z)" (52)

We have described a variance estimator that uses only local information.
An alternative way to obtain avariance estimate uses global information, i.e.,
information from more than one LWR fit, and assumes a single global value
for the additive noise (Cleveland et al. 1988; Cleveland and Grosse 1991,
Cleveland et a. 1992).

9.2. Estimating the Bias
Assessing the bias requires making assumptions about the underlying form

of the true function, and the data distribution. In the case of locally weighted
learning this is a weak assumption, since we need to know only the local



LOCALLY WEIGHTED LEARNING 37

behavior of the function and the local distribution of the data. Let us assume
that the real function f is described locally by a quadratic model:

= f@)+ g x-a) + - Hx-a) (59

where q is the query point, g is the true gradient at the query point, and H
is the true Hessian (matrix of second derivatives) at the query point. The
expected value of the estimate is given by Equation 44, which can be used to
find the bias:

bias = E(§(q)) — ye() = > _[si(a)f (x:)] — f(q) (54)

This equation can be solved if we know the true function. For example, for

the locally quadratic function, we can plug the quadratic function for f(x) in
Equation 53 into Equation 54 to get:

bias = f(a) Y _[si(a)] - f(a) + 9" >_[si(q)(x — q)]

2 Yl @)x - a)H(x ) (55)

The locally weighted regression process that generates sy guarantees that
>~ s(q) = 1, and sincethelinear local model exactly matches any linear trend
in the data, " s;(q) (X - q) = 0. Therefore, the bias depends only on the
quadratic term (Katkovnik 1979; Cleveland and Loader 1994a):

bias = 2 3" si(@)(x; — ) "Hx; — q) (56)

assuming the ridge regression parameters \; have been set to zero. This
formula raises the temptation to estimate and cancel the bias by estimating
the second derivative matrix H. It is not clear that this is better than simply
using a quadratic local model instead of alinear local model. The quadratic
local model would eliminate the local bias dueto the quadratic term (and also
remove the need for the distance metric to compensate for different curvature
in different directions). Of course, if aquadratic local model is used, the bias
will then be due to cubic terms in the Taylor series for the true function,
whose elimination would require estimation of the cubic terms with a cubic
local model, and so on. We have not yet found a principled termination of
thiscycle.

9.3. Assessment Using Cross Validation

We can assess how well locally weighted learning is doing by testing how
well each experience (x;, ;) in the memory is predicted by the rest of the
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experiences. A simple measure of the ith prediction error is the difference
between the predicted output of the input x; and the observed value y;.
However, for non-parametriclearnersthat are overfitting the datathismeasure
may be deceptively small. For example, a nearest neighbor learner would
aways have an error measure of zero because (X;, y;) will be the closest
neighbor to itself.

A more sophisticated measure of the ith prediction error is the leave-one-
out cross validation error, in which the experienceis first removed from the
memory before prediction. Let g be the output predicted for input x; using
the memory with the sth point removed:

{(Xla yl)a (X27 yZ)a sy (Xi—la yi—l)a (Xi—l—la yi—i—l)a sy (Xna yn)} (57)

The ith leave-one-out cross validation error isef¥ = (g2'r —y;). With the lazy
learning formalism, in which most work takes place at prediction time, it is
no more expensive to predict a value with one data point removed than with
it included. This contrasts with the majority of learning methods that have an
explicit training stage — in these casesit is not easy to pick an earlier experi-
ence and temporarily pretend we did not seeit. Ignoring atraining data point
typically requires retraining from scratch with a modified training set, which
can be fairly expensive with a nonlinear parametric model such as a neural
network. In addition, the dependence of nonlinear parametric training on ini-
tial parameter values further complicates the analysis. To handle this effect
correctly many training runswith different starting values must be undertaken
for each different data set. All of thisis avoided with locally weighted learn-
ing with local models that are linear in the unknown parameters, although
tuning of fit parameters does reintroduce the problem. However, tuning of fit
parameters can be a background process that operates on a slower time scale
than adding new data and answering queries.

Crossvalidation canalso beperformedlocally, i.e, fromjust fitting alocally
linear model at one query point g (Cleveland and Loader 1994c). We first
consider the locally weighted average of the squared cross validation error
MSE® at each training point (Myers 1990):

> (€%, ) 2K (d(xi,0))
> K(d(x;,9))
This estimate requires alocally weighted regression to be performed at each
training point with non-zero weight K(d(x;, q)). One could imagine storing

€%, With each training point, but this value would have to be updated as new
datawas |learned. We approximate €%, ~ € to generate the following:

MSE®(q) = (58)
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Y (ef) 2K (d(xi, @) _ N(rf)?
ZK( (Xi,d)) NLWR
where TCV is the weighted cross validation error with point : removed from

a Iocally weighted regression centered at q. The weighted cross validation
residual rc" isrelated to the weighted residual (r; = w;e;) by (Myers 1990):

MSE™(q) =

(59)

ov T
o _ 60
1z M) (60)

Thus, we obtain the final equation for MSE® as

2
o _ 1 T
MSE™(a) = NLWR Xl: (1 —21(Z7Z + A)lz¢> (61)

This equation is a local version of the PRESS statistic (Myers 1990). It
allows usto perform leave-one-out cross validation without recal culating the
regression parametersfor every excluded point. Often, thisis computationally
very efficient.

10. Optimal Fit Parameters. An Example

In this section we will try to find optimal fit parameters (distance metric d( ),
weighting function K (), and smoothing bandwidth 4) for asimple example.
We will make the restrictive assumption that the datais uniformly spaced on
arectangular grid. Wefirst approach this question by exploring kernel shapes
in one dimension. We allow the weights w; to be unknown, and numerically
optimize them to minimize the mean squared error. We assumethe underlying
function is quadratic with second derivative H (Equation 53) and that there
is additive independent identically distributed zero mean noise (Equation 43)
with constance variance 2. The sampled data is regularly spaced with a
distance of A between each data point (in Figure 10 A = 0.1). Equation 42
is solved for s, with the query at x = 0. The mean sguared error is the sum of
the bias (Equation 54) squared and the variance (Equation 45). This quantity
isminimized by adjusting the weights w;. The resulting kernel shape K (d) =
w? is shown in Figure 10. This kernel shape matches the quadratic kernel:

_ [ (@=2?) ifle] <1
K(z) = { 0 otherwise

which has been described in Section 6.

(62)
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Figure 10. The kernel shape that minimizes mean squared error in one dimension. The large
single dot isthe predicted value, whose deviation from zero, the correct value, revealsthe bias.
The vertical bars show the standard deviation of the prediction (i.e., the square root of the
variance), which is greatly reduced from the standard deviation of 1 of the origina data. The
set of large dots have been optimized to minimize the mean squared error of the prediction, and
reveal the optimal kernel shape for this criterion. The line through these points is a quadratic
kernel with the appropriate bandwidth to match the optimized kernel values. The small dots
are the value of the quadratic portion of the underlying function, for comparison.

Further numerical experimentation in one dimension revealed that the
optimal scaling factor m for the one dimensional distance function is approx-
imately:

m? ~ cH (63)
where ¢ is a constant that takes into account issues such as data spacing A
and the standard deviation of the additive noise:
2
cx A% (64)

o

The width of the resulting kernel is directly related to the optimal smoothing
bandwidth.

In two dimensions we can explore optimization of the distance metric.
Optimizing the values of the kernel at each of the data points is beyond our
current computational resources, so we will assume the form of the kernel
function is the quadratic kernel. We will choose a particular value for the
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Figure 11. Contour plot of f(x).

Figure 12. Contour plot of optimal kernel.

Hessian H in Equation 53, and then optimize the scaling matrix M for the
multidimensional distance function to minimize the mean squared error. We
found that the optimal M approximately satisfies the following equation:

M™ = cH (65)

where c is the same as the one dimensional case. Figure 11 shows how
the Hessian matrix H can orient the quadratic component in an arbitrary
orientation. The distance function matrix MM needs to be a full matrix in
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order to allow the optimal kernel (Figure 12) to match the orientation of the
quadratic component of f(x) (Figure 11). For this numerical experiment H
was chosen to be:

1.23851 —1.77313
H= (-1.77313 2.86149 > (66)
The optimal scaling matrix M was found by numerical search to be:
2.32597 —3.33005
M= ( 00  1.18804 ) (67)

and Equation 65 isapproximately satisfied, as(M "M )H ~tisalmost amultiple
of the identity matrix for ¢ = 4.37.

(68)

(MTM)H-1 = (0.99949 —0.0001>

0.0008 1.0002

11. Noisy Training Data and Outliers

Theaveraging performed by thelocally weighted regression process naturally
filters out noise if the weighting function is not infinite at zero distance. The
tuning process can optimizethe noisefiltering by adjusting fit parameterssuch
as smoothing parameters, weighting function parameters, ridge regression
parameters, and choice of local model structure. However, it is often useful to
explicitly identify outliers: training points that are erroneous or whose noise
is much larger than that of neighboring points. An example of the effect of
an outlier is given in Figure 13 and the effect of outlier rejection is shown
in Figure 14. Robust regression (see, for example Hampel et al. 1986) and
cross validation allow extensions to locally weighted learners in which we
can identify or reduce the effects of outliers. Outliers can be identified and
removed globally, or they can be identified and ignored on a query by query
basis. Query-based outlier detection allows training points to be ignored for
some queries and used for other queries. Other areasthat have been explored
are detecting discontinuities and nonstationarity in the training data.

11.1. Global Weighting of Stored Points and Finding Outliers

It is possibleto attach weightsto stored points during the training process and
during lookup that downweight points that are suspected of being unreliable
(Ahaand Kibler 1989; Cost and Salzberg 1993). These weights can multiply
the weight based on the weighting function. Totally unreliable points can be



LOCALLY WEIGHTED LEARNING 43

T T T T T 1
0 02 04 06 08 1
Input

Figure 13. Locally weighted regression approximating a 1-dimensional dataset shown by the
black dots. Thereisan outlier at x = 0.33.

0 02 04 06 08 1
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Figure 14. Locally weighted regression supplemented with outlier removal.

assigned aweight of zero, leading them to beignored. The reliability weights
can be based on cross validation: whether a stored point correctly predicts
or classifies its neighbors. Another approach is to only utilize stored points
that have shown that they can reduce the cross validation error (Aha 1990).
Important issues are when the weighting decision is made and how often the
decision is reevaluated. Global methods typically assign aweight to a point
during training, in which case the decision is usualy never reevaluated, or
during an asynchronous database maintenance process, in which decisions
are reevaluated each time the process cycles through the entire database.

11.2. Local Weighting of Stored Points and Finding Outliers

Local outlier detection methods do not label points asoutliersfor all queries,
as do global methods. Points can be outliers for some queries and not outliers
for others. We can generate weights for training data at query time based on
cross validation using nearby points. The PRESS statistic (Myers 1990) can
be modified to serve asalocal outlier detector inlocally weighted regression.
For this, we need the standardized individual PRESS residual (also called the
Studentized residual):

i

EPRESS = (69)
a\/l —Z](Z7Z + A) 1z
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This measure has zero mean and unit variance and assumes alocally normal
distribution of the error. If, for a given data point it deviates from zero more
than a certain threshold, the point can be called an outlier. A conservative
threshold would be 1.96, discarding all points lying outside the 95% area of
the normal distribution. In our applications, we used 2.57, cutting off all data
outside the 99% area of the normal distribution.

11.3. Robust Regression Approaches

Data with outliers can be viewed as having additive noise with long-tailed
symmetric distributions. Robust regression is useful for both global and local
detection of outliers (Cleveland 1979). A bisquare weighting functionis used
to additionally downweight points based on their residuals:

\2\? .
u; = { <1_ (68;ED) ) If Jes| < Gemep (70)

0 otherwise

where ey ep isthe median of the absolutevalue of theresidualse;. Theweights
now become w; = u; K (d(X;,q)). This process is repeated about 1-3 times to
refine the estimates of w;.

12. Tuning

Like most learning algorithms, locally weighted learning usually needs to
be tuned to work well for a particular problem. Tuning means adjusting the
parameters of the learning algorithm itself. Thelocally weighted fit criteriais

e =3 760,5) — i (2D (71)
13

It includes several “fit” parameters. the bandwidth or smoothing parameter

h, the distance metric d( ), and the weighting or kernel function K (). There

are additional fit parameters such as ridge regression parameters and outlier

thresholds. There are several ways to tune thesefit parameters.

e Global tuning: The fit parameters are set globally by an optimization
process that typically minimizes cross validation error over all the data,
and therefore constant size and shape volumes of data are used to answer
gueries.

e Query-based local tuning: The fit parameters are set on each query
based on local information.
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e Point-based local tuning: The weighted training criteria uses different
fit parametersfor each point x;: abandwidth h;, a distance metric d;( ), a
weighting function K;( ), and possibly aweight Wi, !

o = 3 [766,5 - (LEED) | @2
(3
In typical implementations of this approach the fit parameters are com-
puted in advance of the queries and are stored with the data points.

There are several approachesto computing the fit parameter values:

e Plug-in approach: Thefit parameters can be set by adirect computation.

e Optimization approaches: Thefit parameters can be set by an optimiza-

tion process that either (Marron 1988):
— minimizes the training set error,
— minimizes the test or validation set error,
— minimizes the cross validation error (CV),
— minimizesthegeneralized crossvalidation error (GCV) (Myers 1990),
— maximizes Akaike'sinformation criterion (AIC),
— or adjusts Mallow’s C,,.

Fit parameters cannot be optimized in isolation. The combination of all fit
parameters generates a particular fit quality. If one fit parameter is changed,
typically the optimal values of other parameters change in response. If a
locally constant model is used, then the smoothing parameter and distance
function must reflect the flatness of the neighborhood in different directions.
If the local model is a hyperplane, the smoothing parameter and distance
function must reflect the second derivative of the neighborhood. If the local
model is quadratic, it is the third spatia derivative of the data that must be
dealt with.

For practical purposes it would be useful to have a clear understanding
of how accurate the non-linear fit parameters should be for a good fit. Our
intuition is that approximate values usually result in barely distinguishable
performance from optimal parametersin practical use, although (Brockmann
et al. 1993) states that thisis not true for 4 in kernel regression.

The next section considers optimizing a single set of parameters for all
possible future queries (globa tuning). Section 12.2 considers optimizing
multiple sets of parameters for specific queries (local tuning).

12.1. Global Tuning

Global cross-validation can be a particularly robust method for tuning
parameters, because it does not make any special assumptions. |ndependent
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of the noise distribution, data distribution and underlying function, the cross-
validation valueis an unbiased estimate of how well agiven set of parameters
will perform on new data drawn from the same distribution as the old data.
This robustness has lead to the use of global cross-validation in applications
that attempt to achieve high autonomy by making few assumptions, such as
the General Memory Based Learning (GMBL) system described in (Moore
et al. 1992). GMBL performs large amounts of cross validation search to
optimize feature subsets, the diagonal elements of the distance metric, the
smoothing parameter, and the order of the regression.

12.1.1. Continuous Search

Continuous fit parameters make continuous search possible. Inevitably this
islocal hill climbing, with alarge risk of getting stuck in local optima. The
sum of the squared cross validation errors is minimized using a nonlinear
parameter estimation procedure (e.g., MINPACK (More et al. 1980) or
NL2SOL (Dennis et al. 1981)). As discussed in Section 9.3, in this locally
weighted learning approach computing the cross validation error for asingle
point is no more computationally expensive than answering a query. Thisis
quite different from parametric approaches such as a neural network, where
anew model (network) must be trained for each cross validation training set
with a particular point removed. In addition, if the local model is linear in
the unknown parameters we can analytically take the derivative of the cross
validation error with respect to the parameters to be estimated, which greatly
speeds up the search process.

We can use the optimized distance metric to find which input variables are
more or less important to the function being represented. Distance scaling
factors that go to zero indicate directions that are irrelevant or are consistent
with the local model structure, and that a global model will suffice for those
directions. We can also interpret the ridge regression parameters. The ridge
regression parameters for irrelevant terms in the local model become very
large in the fit parameter optimization process. The effect of thisis to force
the corresponding estimated parameters (3; to the apriori values /3;, which
corresponds to adimensionality reduction.

A relatively unexplored area is stochastic gradient descent approaches to
optimizing fit parameters. Rather than use al the cross validation errors and
their associated contributions to the derivative, why not use only a small
random sample of the cross validation errors and their associated derivative
contributions? Racine (1993) describes an approach to optimizing fit para-
meters based on partitioning the training data into subsets, calculating cross
validation errors for each subset based only on data in the subset, and then
averaging the results.
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12.1.2. Discrete Search

Discrete search algorithmsfor good fit parametersisan active areaof research.
Maron and Moore (1996) describe “racing” techniques to find good fit
parameter values. These techniques compare awide range of different types
of models simultaneously, and handle models with discrete parameters. Bad
models are quickly dropped from the race, which focuses computational
effort on distinguishing between the good models. Typically any continuous
fit parameters are discretized (Maron and Moore 1996).

Techniques for selecting features in the distance metric and local model
have been developed in statistics (Draper and Smith 1981; Miller 1990),
including all subsets, forward regression, backwardsregression, and stepwise
regression. We have explored stepwise regression procedures to determine
which terms of the local model are useful with similar results to the gradient
based search described above. Feature selectionisahard problem becausethe
features cannot be examined independently. The value of a feature depends
on which other features are also selected. Thus the goal is to find a set of
feature weights, not individual feature weightsfor each feature. In Maron and
Moore (1996) a number of agorithms for doing this are described and
compared, including methods based on Monte-Carlo sampling. Aha (1991)
gives an agorithm that constructs new features, in addition to selecting
features. Friedman (1994) gives techniques for query dependent feature
construction.

12.1.3. Continuous vs. Discrete Search

Discrete search can explore settingsfor discretefit parameters, and even select
training algorithm features or function approximation methods (e.g., locally
weighted regression, neural networks, rule-based systems). It would seem that
continuous fit parameter optimization cannot make these choices. However,
this is not the case. By blending the output of different approaches with a
blending parameter «, continuous search can choose model order, algorithm
features, and approximation method. For example, o could be optimized to
blend two methods f1( ) and f2( ) in the following equation:

f(@) = afi(a) + (1 — @) f2(q) (73)

Cleveland and Loader (1994a, c) present an approach to automatically
choose the local model structure (i.e., order of the polynomial model) by
blending polynomial models, where a non-integral model order indicates a
weighted blend between two integral model orders. They use crossvalidation
to optimize the local model order on each query.
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12.2. Local Tuning

Local fit parameter optimization is referred to as “ adaptive” or “variable” in
the statistics literature, as in “adaptive bandwidth” or “variable bandwidth”
smoothers. There are severa reasons to consider local tuning, although it
dramatically increases the number of degrees of freedom in the training
process, leading to increased variance of the predictionsand an increased risk
of overfitting the data (Cleveland and L oader 1994c):

e Adaptation to the data density and distribution: This adaptationisin
addition to the adaptation provided by the locally weighted regression
procedureitself (Bottou and Vapnik 1992).

e Adaptation to variationsin the noiselevel in the training data. These
variations are known as heteroscedasticity.

e Adaptation to variationsin the behavior of the underlying function.
The function may belocally planar in some regions and have high curva-
turein others.

“Plug-in” estimators have been derived and local (locally weighted)

training set error, cross validation, or validation (test) set error can drive
an optimization of the local model.

13. Interference

Negative interference between old and new training datais one of the most
important motivations for exploring locally weighted learning. To illustrate
the differences between global parametric representations and a locally-
weighted learning approach, a sigmoidal feedforward neural network
approach was compared to alocally weighted learning approach on the same
problem. The architecture for the sigmoidal feedforward neural network was
taken from (Goldberg and Pearlmutter 1988, Section 6) who modeled arm
inverse dynamics. The ability of each of these methods to predict the torques
of the simulated two joint arm at 1000 random points was compared (Atke-
son 1992). Figure 15 plots the normalized RM S prediction error. The points
were sampled uniformly using ranges comparable to those used in Miller et
al. (1978), which also looked at two joint arm inverse dynamics modeling.
Initially, each method was trained on atraining set of 1000 random samples,
and then the predictions of the torques on a separate test set of 1000 random
samples of the two joint arm dynamics function were assessed. The solid
bar marked LWR at location 1 shows the test set error of alocally weighted
regression with aquadratic local model. Thelight bar marked NN at location
2 showsthe best test set error of the neural network. Both methods generalize
well on this problem (bars 1 and 2 have low error).
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Figure 15. Performance of various methods on two joint arm dynamics.

Each method was then trained on ten attempts to make a particular desired
movement. Each method successfully learned the desired movement. After
this second round of training, performance on the random test set was again
measured (bars at locations 4 and 5). The sigmoidal feedforward neural
network lost its memory of the full dynamics (thelight bar at location 5 has a
large error), and represented only the dynamics of the particular movements
being learned in the second training set. This interference between new and
previously learned datawas not prevented by increasing the number of hidden
units in the single layer network from 10 up to 100. The locally weighted
learning method did not show thisinterference effect (solid bar at location 4).

The interference is caused by the failure of the neural network model
structure to match the arm inverse dynamics structure perfectly. There is
no noise in the data, and no concept drift, so these causes are eliminated as
possible sources of theinterference. It can be argued that the sigmoidal neural
network forgot the original training data because we did not include that data
in the second training data set (Iearning a specific movement). That is exactly
our point; if al past datais retained to combat interference, then the method
becomes a lazy learning method. In that case we argue that one should take
advantage of the opportunity to locally weight the training procedure, and
get better performance (Vapnik 1992; Bottou and Vapnik 1992; Vapnik and
Bottou 1993).
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14. Implementing L ocally Weighted L earning

Thereare several concernsabout locally weighted learning systems, including
whether locally weighted learning systems can answer queries fast enough
and whether their speed will unacceptably degrade asthe size of the database
grows. This section explores these concerns. We discuss fast ways to find
relevant data using either k-d trees in software, specia purpose hardware,
or massively paralel computers, and the current performance of our LWR
implementation. Our goal is to minimize the need for compromises such as
forgetting (discarding data) to keep the database size under a limit, instance
averaging, which averages similar data, or maintaining an elaborate data
structure of intermediate results to accelerate query processing. We will not
discuss LWR acceleration approaches that are limited to low dimensional
problems such as binning (Fan and Marron 1994a; Turlach and Wand 1995).
Other discussions of fast implementations include Seifert et al. (1994) and
Seifert and Gasser (1994).

14.1. Retrieving Relevant Data

The choice of method for storing experiences depends on what fraction of the
experiences are used in each locally weighted regression and what computa-
tional technology isavailable. If all of the experiencesare used in each locally
weighted regression, then simply maintaining a list or array of experiences
is sufficient. If only nearby experiences are included in the locally weighted
regression, then an efficient method of finding nearest neighborsis required.
Nearest neighbor lookup can be accelerated on a serial processor using the
k-d tree data structure. Parallel processors and special purpose processors
typically use parallel exhaustive search.

141.1. K-dTrees

Naively implemented search for a d dimensiona nearest neighbor in a data-
base of size n requires n distance computations. Nearest neighbor search
can be implemented efficiently by means of ak-d tree (Bentley 1975; Fried-
man et al. 1977; Bentley and Friedman 1979; Bentley et al. 1980; Murphy
and Selkow 1986; Ramasubramanian and Paliwal 1989; Broder 1990; Samet
1990; Sproull 1991). A k-d tree is a binary data structure that recursively
splitsad-dimensional spaceinto smaller subregions. The search for anearest
neighbor proceeds by initially searching the k-d tree in the branches near-
est the query point. Frequently, distance constraints mean there is no need
to explore further branches. Figure 16 shows a k-d tree segmenting a two
dimensional space. The shaded regions correspond to areas of the k-d tree
that were not searched.
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Figure 16. Generaly during a nearest neighbor search only a few leaf nodes need to be
inspected. The query point is marked by an x and the distance to the nearest neighbor is
indicated by acircle. Black nodes are those inspected on the path to the leaf node.

The accesstime is asymptotically logarithmic in n, the size of the memory,
although often overhead costs mean that nearly all the data points will be
accessed in a supposed logarithmic search, for example, with eight dimen-
sions or more and fewer than approximately 100,000 uniformly distributed
data points. In fact, given uniformly distributed data points, the tree size for
which logarithmic performance is noticeable increases exponentially with
dimensionality. Two things can alleviate this problem. First, the data points
are unlikely to be distributed uniformly. In fact, the less randomly distributed
the training data is the better. Second, there are approximate algorithms that
can find one or more nearby experiences, without guaranteeing they are the
nearest, that do operateinlogarithmictime. Empirically, these approximations
do not greatly reduce prediction accuracy (Omohundro 1987; Moore 1990b).
Bump trees (Omohundro 1991) are another promising efficient approxima-
tion. Cleveland et al. (1988), Farmer and Sidorowich (1988a, b), Renka
(1988), Grosse (1989), Moore (1990a), Cleveland and Grosse (1991), Kar-
ali¢ (1992), Townshend (1992), Loader (1994), Wess et al. (1994), Deng
and Moore (1995), Lowe (1995), and Smagt et al. (1994) have used treesin
memory-based learning and locally weighted regression.
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14.1.2. Special Purpose Devices

Special purpose hardware for finding nearest neighbors has a long history
(Taylor 1959, 1960; Steinbuch 1961; Steinbuch and Piske 1963; Kazmier-
czak and Steinbuch 1963; Batchelor 1974). These machines calculated either
a Manhattan or Euclidean distance for all stored points, and then did com-
parisonsto pick the winning point. The current version of this technology is
the wafer scale memory-based reasoning devices proposed by Yasunagaand
Kitano (1993). The devices allocate one processor per data point, and can
handle approximately 1.7 million data points per 8 inch wafer. The designers
have exploited the properties of memory-based learning in two ways. First,
the resolution of the computed distance is not critical, so analog adders and
multipliers are used for weighting and distance calculationsinstead of digital
circuits, saving much space on the silicon for other processors. Second, the
deviceisrobust to faulty processors, in that afaulty processor only causesthe
loss of a single data point. The authors advocate simply ignoring processor
failures, although it would be possible to map the faulty processors and skip
them when loading data.

14.1.3. Massively Parallel Implementations

Many nearest neighbor systems have beenimplemented on massively parallel
Connection Machines (Waltz 1987). Onamassively parallel computer, suchas
theCM1and CM2 (Hillis 1985), exhaustive searchisoften faster than using k-
d trees, due to the limited number of experiences allocated to each processor.
The Connection Machine can have up to 26 (65536) processors, and can
simulate a parallel computer with many more processors. Experiences are
storedinthelocal memory associated with each processor. An experience can
be compared to the desired experience in each processor, with the processors
running in paralel, and then a hardwired global-OR bus can be used to
find the closest match in constant time independent of the number of stored
experiences. The search time depends linearly on the number of dimensions
in the distance metric, and the distance metric can be changed easily or made
to depend on the current query point.

The critical feature of the massively parallel computer system IXM2 is
the use of associative memories in addition to multiple processors (Higuchi
et a. 1991). There are 64 processors (Transputers) in the IXM2, but each
processor has 4K x 40 bits of associative memory, which increases the
effective number of processors to 256K. This architecture is well suited for
memory-based learning where the distance metric involves exact matches of
symbolic fields, as that is the operation the associative memory chips can
support. Future associative memories might implement Euclidean distance
as a basic operation. There have been implementations of memory-based
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trandation and parsing on the IXM2 (Kitano and Higuchi 1991a, b; Sumita
et al. 1993; Kitano 1993, b).

The current generic parallel computer seems to be on the order of 100
standard microprocessors tightly connected with a communication network.
Examples of this design are the CM5 and the SNAP system (Kitano et al.
1991). The details of the communication network are not critical to locally
weighted learning, sincethe time critical processing consists of broadcasting
the query to the processors and determining which answer is the best, which
can easily be done with a prespecified communication pattern. This form of
communication is not difficult to implement. This machine does not have
the thousands of processors that make exhaustive search the obvious nearest
neighbor agorithm. The processors will probably maintain some sort of
search data structure such as a k-d tree, although the local k-d trees may be
too small for efficient search performance. Kitano et al. (1991) describe an
implementation of memory-based reasoning on the SNAP system. This type
of parallel computer is excellent for locally weighted learning, where the
regression calculation dominates the lookup time if a large fraction of the
points are used in each regression.

14.2. Implementing Locally Weighted Regression

L ocally weighted learning minimizes the computational cost of training; new
data points are simply stored in the memory. The price for trivia training
costs is a more expensive lookup procedure. Locally weighted regression
uses a relatively complex regression procedure to form the local model,
and is thus more expensive than nearest neighbor and weighted average
memory-based learning procedures. For each query a new local model is
formed. The rate at which local models can be formed and evaluated limits
the rate at which queries can be answered. We have implemented the locally
weighted regression procedure on a 33MHz Intel i860 microprocessor. The
peak computation rate of this processor is 66 MFlops. We have achieved
effective computation rates of 15 MFlops on a learning problem with 10
input dimensions and 5 output dimensions, using a linear local model. This
leads to a lookup time of approximately 15 milliseconds on a database of
1000 points, using exhaustive search. Thistime includes distance and weight
calculationfor all the stored points, forming the regression matrix, and solving
the normal equations.
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15. Applicationsof Locally Weighted L earning

The presence of the LOWESS and L OESS softwarein the S statistics package
has lead to the use of locally weighted regression as a standard tool in many
areas, including modeling biological motor control, feeding cycles in smok-
ers and nonsmokers, lead-induced anemia, categories of tonal alignment in
spoken English, and growth and sexual maturation during disease (Cleveland
1979; Cleveland et al. 1992).

Atkeson et al. (1996) survey our own work in applying locally weighted
learning to robot control. Zografski has explored the use of locally weighted
regression in robot control and modeling time series, and also compared LWR
to neural networks and other methods (Zografski 1989, 1991, 1992; Zograf-
ski and Durrani 1995). Gorinevsky and Connolly (1994) compared severad
different approximation schemes (neural nets, Kohonen maps, radial basis
functions, and local polynomical fits) on simulated robot inverse kinematics
with added noise, and showed that local polynomial fits were more accurate
than all other methods. van der Smagt et al. (1994) learned robot kinematics
using local linear models at the leaves of atree data structure. Tadepalli and
Ok (1996) apply local linear regression to reinforcement learning. Baird and
Klopf (1993) apply nearest neighbor techniques and weighted averaging to
reinforcement learning and Thrun (1996) and Thrun and O’ Sullivan (1996)
apply similar techniquesto robot learning. Connell and Utgoff (1987) interpo-
lated avalue function using locally weighted averaging to balance an inverted
pendulum (a pole) on a moving cart. Peng (1995) performed the cart pole
task using locally weighted regression to interpolate a value function. Aha
and Salzberg (1993) explored nearest neighbor and locally weighted learning
approaches to a tracking task in which a robot pursued and caught a ball.
McCallum (1995) explored the use of lazy learning techniques in situations
where states were not completely measured. Farmer and Sidorowich (1987,
1988a, b) apply locally weighted regression to modeling and prediction of
chaotic dynamic systems. Huang (1996) uses nearest neighbor and weighted
averaging techniques to cache simulation results and accelerate a movement
planner.

Lawrence et a. (1996) compare neural networks and local regression
methods on several benchmark problems. Local regression outperformed
neural networks on half the benchmarks. Factors affecting performance
included whether the data had differing density over the input space, noise
level, dimensionality, and the nature of the function underlying the data.

Several researchers have applied locally weighted averaging and regres-
sionto free form 2D and 3D deformation, morphing, and image interpolation
in computer graphics (Goshtasby 1988; Wolberg 1990; Ruprecht and Muller
1992; Ruprecht and Muller 1991; Ruprecht and Muller 1993; Ruprecht et al.
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1994). Coughran and Grosse (1991) describe using locally weighted regres-
sion for scientific visualization and auralization of data.

Geet d. (1994) apply locally weighted regression to predict cell density in
afermentation process. They used nearest neighbor weighting and a tricube
weighting function. They also used principal componentsand crossvalidation
to select features globally. Locally weighted regression outperformed other
methods, including a global nonlinear regression. Hammond (1991) used
LWR to model fermentation as well.

Nass et al. (1990), Naes and Isaksson (1992) and Wang et a. (1994) apply
locally weighted regression to analytical chemistry. They useglobal principal
components to reduce the dimensionality of the inputs, and they use cross
validation to set the number of componentsto use. They also explore several
weighted Euclidean distance metrics, including weighting depending on the
range of the datain principal component coordinates, weighting depending on
how good that dimensionisin predicting the output, and a distance metric that
includes the output value. They use a quadratic local model and the tricube
weighting function. They use cross validation to select the number of points
toincludeinthelocal regression. They makethe important point that optimal
experiment design is quite different when using locally weighted regression
as compared to global linear regression.

Tamadaet al. (1993) apply memory-based learning to water demand fore-
casting. They select features using Akaike's Information Criterion (AIC), and
use locally weighted averaging within a neighborhood. They use a default
temporally local regression schemeif no pointsarefoundinthe neighborhood.
They use error rates to set feature weights and to perform outlier removal.

Townshend (1992) applies locally weighted regression to the analysis,
modeling, coding, and prediction of speech signals. He uses asingular value
decomposition to reduce the dimensionality of the regression to afixed value
D, determined from other criteria. He uses the £ closest points to form the
local model. The distance to the nearest point is used as an estimate of the
confidenceintheprediction. A clustering processon theinputs and the outputs
(X;, ¥;) isused to handle noise and one to many mapping problems. A k-d tree
is used to speed up nearest neighbor search. This process lead to a significant
improvement over alinear predictor.

Wijnberg and Johnson (1985) apply locally weighted regression to inter-
polating air quality measurements. They used cross validation to optimize
the smoothing parameter globally, but did not find a well defined minimum
for the smoothing parameter. Kozek (1992) describe using LWR to model
automobile emissions.
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Walden and Prescott (1983) use LWR to remove trends in time series
involving climate data. Solow (1988) estimated the variance or noise level in
time series climate data after having removed the mean using LWR.

L ocally weighted regression has al so been applied in economicsand econo-
metrics (Meese and Wallace 1991; LeBaron 1992). Meese and Rose (1990)
used LWR to model exchange rates and conclude that no significant non-
linearity exists in the data. Diebold and Nason (1990) also used LWR to
predict exchange rates, without any more success than other nonparametric
regression techniques.

Turetsky et al. (1989) and Raz et a. (1989) use LWR to smooth biological
evoked potential data, and explore approaches to choosing the smoothing
parameter. Bottou and Vapnik (1992) apply locally weighted classification to
optical character recognition (OCR). Rust and Bornman (1982) apply LWR
to marketing data.

There have been a range of applications of locally weighted techniques
in statistics (Cleveland 1993b, Cleveland and Loader 1995). The idea of
local fitting was extended to likelihood-based regression models by Tib-
shirani and Hastie (1987) and Hastie and Tibshirani (1990) applied locally
weighted techniquesto many distributional settingssuch aslogistic regression
and developed genera fitting algorithms. Lejeune and Sarda (1992) applied
locally weighted regression to estimation of distribution and density func-
tions. Cleveland et al. (1993) applied locally weighted regression to density
estimation, spectrum estimation, and predicting binary variables. Fan and
Kreutzberger (1995) applied locally weighted regression to spectral density
estimation.

16. Discussion
16.1. What Is A Local Learning Approach?

To exploretheideaof local learning, it isuseful to first consider what aglobal
learner is. A global/distributed representation is typically characterized by:
1. Incrementally learning a single new training point affects many para-
meters.
2. A prediction or answer to a query also depends on many parameters.
1 and 2 are characteristics of distributed representations. An additional
criterion:
3. There are many fewer parameters than data.
could serve as a definition of aglobal representation or model, and is a good
predictor that 1 and 2 will be true for a particular method. However, it isalso
possible to have local methods with attribute 3, and not attributes 1 and 2,
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such as alow resolution tabular representation with non-overlapping cells. A
part of the design space that has not been explored are learning algorithms
with huge numbers of parameters that use distributed representations (1 and
2, but not 3).

There are at least three different views of what constitutes local learning:
local representations, local selection, and locally weighted learning. This has
lead to some confusion and convol uted terminology. In alocal representation,
each new data point affects a small subset of the parameters and answering
aquery involves a small subset of the parameters aswell. Thisview of local
learning stems from the distinction between local and distributed representa-
tions in neuroscience (Thorpe 1995). Examples of local representations are
lookup tables and exemplar/prototype based classifiers. It is not necessarily
the case that the number of parameters in the representation be on the order
of the number of data points (i.e., a considerable amount of local averaging
can occur).

Local selection methods store all (or most) of the training data, and use a
distance function to determine which stored points are relevant to the query.
Thefunction of local selection isto select asingle output using nearest neigh-
bor or using a distance-based voting scheme (k-nearest neighbor). Examples
of these types of approaches are common, and include Stanfill and Waltz
(1986) and Aha (1990).

Locally weighted learning stores the training data explicitly (as do local
selection approaches), and only fits parameters to the training data when
a query is known. The critical feature of locally weighted learning is that
a criterion locally weighted with respect to the query location is used to
fit some type of parametric model to the data (Vapnik 1992; Bottou and
Vapnik 1992; Vapnik and Bottou 1993). We havethe paradoxical situation that
seemingly global model structures (e.g., polynomials, multilayer sigmoidal
neural nets) are being called local models because of the locally weighted
training criterion. All of the data can be involved in training the local model,
aslong as distant data matters less than nearby data.

This paper explores locally weighted training procedures, which involves
deferring processing the training data until a query is present, leading to
the use of the terms lazy learning and least commitment learning. There are
many global approaches and representations such as: rules, decision trees,
and parametric models (e.g., polynomials, sigmoidal neural nets, radial basis
functions, projection pursuit networks). All of the above approaches can be
transformed into locally weighted approaches by using a locally weighted
training criterion (Vapnik 1992; Bottou and Vapnik 1992; Vapnik and Bottou
1993; Kozek 1992), so the scope of locally weighted learning is quite broad.
We will discusslocally weighted classification as an example.
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16.2. Locally Weighted Classification

In classification, there are several ways to incorporate distance weighting.
In k-nearest neighbor approaches, the number of occurrences of each class
in the k closest points to the query are counted, and the class with the most
occurrences (or votes) is predicted. Distance weighting could be used to
weight the votes, so that nearby data points receive more votes than distant
points.

A second way to incorporate distance weighting in classifier training is
to incorporate it into the cost criterion that is being minimized by training
(Vapnik 1992; Bottou and Vapnik 1992; Vapnik and Bottou 1993):

C(a) = D _[L(&, cruer) K (d(xi, Q)] (74)

[

C' is the cost to be minimized and L(C;, Cyye) IS the cost of predicting class
¢; on training point x; when the true classis cyyg - K () is the weighting or
kernel function. A simple version of this approach is to select the k nearest
points and just train a classifier on that data. In this case K () is a uniform
or boxcar kernel. The form of the classifier is not constrained in any way.
Locally weighted learning specifies the form of the training criterion only,
and not the form of the performance algorithm.

A third way to incorporate distance weighting is to treat classification as
aregression problem, where there are decision functions for each class, and
the decision function with the largest value at the query point determines the
classof the query. Training these decision functions can be distance weighted
aswell:

Cla) =) [(Z(gj (X;) — tij)z) K (d(x;, Q))] (79)

( J

whereg;() isthedecisionfunctionfor class j, andt;; isthetarget for decision
function g;( ) on training point . Hastie and Tibshirani (1994) describe an
approach in which global approaches to finding discriminants are localized
by locally weighting the algorithm directly, rather than the criterion.

In this paper we described fitting simple linear models using distance
weighted fit criterion. One can imagine using distance weighted criterion to
train linear decision functions and linear discriminants to create local classi-
fiers. It isalso possibleto train general models, such aslogistic regression, to
perform classification in alocally weighted fashion.
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16.3. Reguirementsfor Locally Weighted Learning

Locally weighted learning has several requirements:

e Distancefunction: Locally weighted learning systemsrequire ameasure
of relevance. The major assumption made by locally weighted learning
is that relevance can be measured using a measure of distance. Nearby
training pointsare morerelevant. Thereare many other possible measures
of relevance, and also more general notions of similarity. The distance
function d(a, b) needs to input two objects and produce a number. The
distance function does not need to satisfy the formal requirements for a
distance metric.

e Separable criterion: Locally weighted learning systems compute a
weight for each training point. To apply this weight, the training cri-
terion cannot be a general function of the predictions of the training
points:

C= L(?;l?yl?gzayZa"'agnayna) (76)
but must be separable in some way. We use additive separability:

C = Z[L(@i,yz‘)K(d(Xu a))] (77)

although there are other forms of separability.

e Enough data: There needsto be enough datato compute statistics, which
isalsotrue of other statistical |earning approaches. How much isenough?
We have run robot learning experiments where performance improve-
ments started to occur with on the order of ten points in the training
set, although we typically collect between 100 and 1000 points during
an experiment. The amount of training data needed is highly problem
dependent.

e Labelled data: Each training point needs to have an associated output
y;. For classification thisis alabel, and for regression (function approxi-
mation) it is a number.

e Representations: Although the above requirements are enough for a
system using nearest neighbor techniques, locally weighted regression
requires that each object produces a fixed length vector of the values
(symbolic or numeric) for alist of specified features:

1
a
x=|"? (78)

Tn
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However, more general representations can be handled by locally weighted
learning approaches. For example, a more general training criterion is:

C= Z{L (Xi, 8), Yi) K(d(X;, Q) } (79)

The inputs X;, outputs Y;, and query Q can be complex objects such as
entire semantic networks, with the distance functions being graph matching
algorithms or graph difference measuring algorithms, and f( ) being agraph
transformation with 8 as adjustable parameters (Elliot and Scott 1991). Or
the objects can be text computer files, with the inputs X in Japanese and the
outputsY in English, the distancefunctions can be the number of charactersin
the output of afile difference program such asthe UNIX di f f , and the local
model f() can be a machine translation program with adjustable parameters
(. Typical parameters for an expert system might be strengths of rules, so
changing ; affects which rules are selected for application.

The input space distance d( ) can be generalized to take into account the
output space distance between the output values of the training data and a
predicted output:

e=x ok (1((5) (y,)))) e

This is useful when the function being approximated has severa distinct
outputs for similar inputs.

Although it has not yet been extensively explored by current research, it
is possible for locally weighted learning systems to have stored objects that
provide separate information to the query distance function (X;) and to the
local model (X;) (Hammond 1991; Callan et al. 1991; Nguyen et al. 1993).
In this case the training criterion might be:

C= Z{L X, ), Vi) K (d(Xi,Q))} (81)

One example of this is to use measures of volatility of the stock market to
measure distance between data points and a query d(X;, Q), but use price
histories and other factorsto form local (with respect to volatility) predictive
models for future prices f(X;, ) (LeBaron 1990, 1992). Another exampleis
to use nationality as the input to the distance function (requiring a distance
calculation for symbolic values), and to use numeric features such as age,
height, weight, and blood pressure to build a locally (with respect to the
nationality distance) weighted regression to predict heart attack risk.
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16.4. Future Research Directions

Our view of interesting areas of future research include:

e Hybrid Tuning Algorithms: We have developed independent contin-
uous and discrete fit parameter optimization techniques. It is clear that
a hybrid approach can do better than either approach alone. Parameters
could initialy betreated as discrete, and then more and more continuous
optimization could be performed as optimal values were approached, for
example. Another approach is for the racing algorithms to allow contin-
uous tuning by each contestant during the race, rather than racing fixed
sets of parameters.

e New forms of local tuning: So far research has focused on locally
tuning bandwidth and smoothing parameters. More work needs to be
done on locally tuning distance metrics, ridge regression parameters,
outlier thresholds, etc., without overfitting.

e Multiscale local tuning: One dimensional fit parameters such as band-
width and model order can be locally optimized using small neighbor-
hoods. Multidimensiona fit parameters such as the distance scale para-
meters in a distance matrix M or the set of ridge regression parameters
need much larger neighborhoods and different kinds of regularization to
be tuned locally. How should these different tuning processesinteract?

e Stochastic gradient approaches to continuous tuning: Continuous
optimization based on estimates of the gradient using small numbers
of random queries rather than exhaustive query sets seems a promising
approach to efficient tuning algorithms (Moore and Schneider 1995).

e Properties of massive cross-validation: We have discussed the use of
cross-vaidation, and why locally weighted learning is particularly well
suited to its use. Better understanding of how much cross validation can
take place beforeit isin danger of overfitting (which must be guarded by
an extralevel of cross-validation) would be desirable.

e Probabilistic approaches: Wewouldliketo explorefurther theanal ogies
between locally weighted learning and probabilistic models, including
Bayesian models (Rachlin et al. 1994; Ting and Cameron 1994).

e Forgetting: So far, forgetting has not played an important role in our
implementations of robot learning, as we have not run out of memory.
However, we expect forgetting to play a more important role in the
future, and expect it to be necessary to implement a principled approach
to storage control.

e Computational Techniques: For enormous dataset sizes, new data man-
agement algorithms may be needed. They include principled ways to
forget or coalesce old data, compactly represent high dimensional data
clouds, ways of using samples of datasetsinstead of entire datasets, and,
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in the case of multi-gigabyte datasets, hardware and software techniques
for managing data on secondary storage.

e LessLazy Learning: This review has focussed on a pure form of lazy
learning, in which only the data is stored between queries. This purist
approach will be too extreme in some circumstances, and most tuning
algorithmsfor fit parameters store the optimized fit parametersin between
queries. Substantial amounts of data compression can be achieved by
building a set of local models at fixed locations, using the techniques
described in this paper. In addition to computational speedup in the pres-
ence of large datasets there may be statistical advantagesto compressing
data instead of merely storing it all (Fritzke 1995; Schaal and Atkeson
1995).

17. Summary

This paper has surveyed locally weighted learning. Local weighting, whether
by weighting the data or the error criterion, can turn global function approx-
imation into powerful alternative approaches. By means of local weighting,
unnecessary bias of global function fitting is reduced, higher flexibility is
obtained, but desirable properties like smoothness and statistical analyzabil-
ity are retained. We have concentrated on how linear regression behaves
under local weighting, and surveyed the ways in which tools from conven-
tional regression analysisin global regression can beused inlocally weighted
regression. A major question has concerned the notion of locality: what is a
good choice of distance metric, how close within that metric should points
be and how can these decisions be automatically made from the data. The
field of local learning is of large interest in the statistics community, and
we have provided entry pointsinto that literature. Locally weighted learning
is also rapidly increasing in popularity in the machine learning community
and the outlook is promising for interesting statistical, computational and
application-oriented devel opment.
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