
 1

Improving Software Quality through Requirements
Elicitation

Sereen Abu Aisheh
Faculty of Technology and Applied Sciences/ Al-Quds Open University, Nablus, Palestine

sabueshih@qou.edu

Abstract

Today’s IT challenge is to deliver, as quickly as possible - and within a fixed budget,

quality, business-critical software systems that can support business initiatives in a

changing business environment, this means that three factors should be maintained to

produce the desired software, these would be cost, quality and time.

Most project management efforts concentrate on meeting time and cost constraints,

passing over the quality factor, research in software development industry shows that

the major problem facing software development isn’t crossing time and budget limits

(though it’s a big issue), but it’s the production of software systems that wont be used

as they don’t address vital business needs, this is definitely a quality issue.

This paper focuses on improving the quality of a software products through improving

the requirements elicitation process, it employs the results of a research conducted in

two local software houses to reveal the relationship between software quality and

requirements elicitation process as the road to producing better software, it also

discusses two issues that may lead to failure in elicitation process (bad communication

and requirements volatility).

Keywords: Requirements Elicitation, Evolving Requirements, Software Quality.

Introduction

IT industry still has a gap between what clients need and what they really get, most

software development projects are never completed because they run out of budget and

time; and even completed ones are of poor quality.

According to Chaos Report 2003 for example, clients only got 54% of the functions

they requested, and 42% of the delivered functions were unused for long periods, the

cause of these shortcomings was attributable to changing user requirements.

As the report indicates, there is a big gap between theory and practice in requirements

area, software developers have many tools and procedures for managing client

requirements and translating them into a working software, but these tools are rarely

used; as the time-to-market pressure increases, most companies tend to put less efforts

in the area of requirements management, which will in turn affect the overall product

quality. Statistics show that poor quality has negative effects on the long run specially

for budget; the less the product quality is, the more modifications it needs, modifying

the product means more time and cost, which may make the overall development

project unprofitable for both client and developer.

mailto:sabueshih@qou.edu

 2

Most developers seek the solution for this defect in the area of production tools and

procedures; they focus on using some brand technologies, while the real problem lays

in the requirements management process, like all other projects, software development

projects need good project management process to produce a 'quality' product that

meets the client's demands without crossing time and budget constraints, this means

that there are predefined deliverables that should be produced after each development

activity, but what if those deliverables are not what clients really want? What if they

couldn’t be produced?

 In software development, deliverables represent the desired system functionalities that

were specified based on the elicited client requirements, so if the wrong requirements

were elicited; the whole project will be a failure as a result and the final product may

not be used at all. To prevent such failures, more efforts should be put in order to

enhance the requirements management process.

According to SQS report 2006; the problems in software development projects that

failed or needed considerable additional efforts to be completed were [13]:

 Shortcomings in the specification of the requirements (50%)

 Shortcomings in the management of client requirements (40%)

The reason of failure is because most companies don’t have a structured procedure for

requirements management, or some do have standardized procedures but those are not

implemented consistently in practice. In a research conducted for the purpose of this

paper with 100 IT employees in two major IT companies in Palestine, 62% of the

interviewed IT personnel stated that their companies don’t have well-defined

procedures to understand clients' needs, 33% of them stated that their companies do

have such procedures but those are rarely implemented in software development

projects.

In addition, SQS statistics show that clients are paying additional 20% of the original

contract value in average for changing requirements, our research results supports this

finding as 40% of interviewed IT personnel admitted that in most cases their client

asked for changes after the system was delivered, which entail more time and cost, and

affected the overall quality of the product in turn.

Requirements Elicitation
Requirements elicitation is the first stage in building an understanding of the problem

that the software is to solve [10]. Technically, elicitation is a process where clients,

users, and developers reveal and articulate their requirements [14] but it doesn’t mean

that requirements are all there and can be easily captured by using any appropriate

technique [11]. Most requirements management methods presume that requirements are

explicitly and completely stated; however, experience shows that requirements are

rarely complete and usually contain implicit requirements, software requirements

characteristically suffer from inconsistency, incompleteness, ambiguity, duplication,

and inconstancy [12], the way to overcome the fuzziness of requirements is by applying

a structured elicitation process that deals with fact-finding, information gathering, and

integration in order to obtain a set of requirements which describe the characteristics of

the possible solution(s) [1].

Requirements Elicitation Problems

 3

Problems of requirements elicitation can be grouped into three main categories [1, 12,

and 14]:

 Problems of scope, in which the requirements may address too little or too

much information (i.e. defining the boundary of the system).

 Problems of communication between the communities participating in the

development process (e.g. users, stakeholders, and developers):

 Problems of volatility: the changing nature of requirements as they evolve over

time which represents the main obstacle in elicitation process.

Our interest here is in studying the effect communication and volatility problems on the

elicitation process and hence on software quality, next we discuss these problems in

more details.

Problems of Volatility
Requirements change [6, 11. 14, 2]. During the time it takes to develop a system users’

needs may mature because of increased knowledge brought on by the development

activities, or they may shift to a new set of needs because of organizational or

environmental pressures. If such changes are not accommodated, the original

requirements set will become incomplete, inconsistent with the new situation, and

potentially unusable because they capture information that has since become out of

date.

One primary cause of requirements volatility is that user needs evolve over time. The

requirements engineering process of elicit, specify, and validate should not be executed

only once during system development, but rather should be returned to so that the

requirements can reflect the new knowledge gained during specification, validation,

and subsequent activities. Requirements management process should be iterative in

nature, “so that solutions can be revised in the light of increased knowledge” [1].

Another cause of requirements volatility is that requirements are the product of the

contributions of many individuals that often have conflicting needs and goals. Due to

political climate and other factors, some times the needs of a particular group may be

overemphasized in the elicitation of requirements. Later prioritization of the elicitation

communities’ needs may correct this mistake and result in requirements changes. Both

the traceability of requirements and their consistency may be affected if these changes

are frequent and not anticipated [1, 4].

Organizational complexity is another cause of requirements volatility as organizational

goals, policies, structures, and work roles of intended end users all may change during

the system’s development, especially as the number of users affected by a system’s

development increases.

Problem of Communication

Requirements management is a social process [1, 9] it involves various communities

with different backgrounds and needs, any elicitation process that ignores this social

factor will absolutely fail in understanding the characteristics of the future software.

One factor that may influence the degree of understanding is language; if clients and

developers speak different languages, then the probabilities of misunderstanding what

clients really want are maximized. Another factor that disrupts effective

 4

communication is the way clients express their demands, since they don’t have much

knowledge in computer domain so they can't articulate their needs in a form that can be

understood by developers.

Problems of communication and requirements volatility proved to be critical issues as

they may lead to building unsatisfactory software in the long run, our research reveals

that difficulties in communication with client negatively affected the development

process; 32% of respondents think that when the requirements management sessions

(like JAD) were ill-structured, they had troubles understanding what their client really

want, 17% of those also think that their companies didn’t spend enough time and

efforts in the requirements definition activity as they met their client few times only at

project start. When asked about language difference between client and developer, 30%

stated that when they were involved in projects for foreign clients, language difference

was an obstacle as they couldn’t understand client requirements and in some cases

those requirements were interpreted incorrectly. 52% of respondents also stated that

most clients can't speak for them selves or they don’t really know what they need which

in turn caused some requirements to be missing.

Respondents also said that in almost every project, clients keep changing their minds,

they ask for a lot of modifications especially for functional requirements, 86% of

respondents stated that the requirements statement was updated frequently due to

changing client requirements, which caused the document to be inconsistent, 74%

stated that the frequent modifications made it harder for them to design the target

system as they were 'lost' and ultimately their client was unsatisfied with the final

product.

Obviously, research result indicate that bad communication and evolving requirements

can cause the requirements management process to fail, since the actual requirements

which are the base of development process can't be elicited and documented, or the

wrong requirements were defined and built, in both situations the resulted software was

of poor quality as 38% of respondents declared, because its either not what clients

expect and need, or it didn’t provide all demanded functions.

Quality is typically defined in terms of conformance to specification, freedom of

defects, and fitness for purpose [3, 8]; IEEE glossary has many definitions for software

quality [7]:

 The totality of features and characteristics of a software product that bear on its

ability to satisfy given needs.

 The degree to which software possesses a desired combination of attributes.

 The degree to which clients or users perceive that software meets their

composite expectations.

 The composite characteristics of software that determine the degree to which

the software in use will meet the expectations of the client.

According to the previous definitions, a software product quality is basically measured

by the degree to which the specified software accomplishes clients' expectations and

desired functions, any software product that lacks those features is considered to have

poor quality, this matches the findings in our research as 84% of respondents

considered post delivery modifications as indication of poor product quality.

 5

To guarantee high quality software, attention should be paid to the quality of

development process itself, quality assurance procedures should be applied to monitor

development activities as well as their outcomes. For any quality assurance procedure,

two questions need to be investigated on a regular basis [13]:

 Is the right system being build?

 Is the system being build correctly?

These questions take us back to requirements. In order to develop a high-quality system

that fulfills client needs, the right client requirements should be specified, this can't be

achieved unless an interactive requirements management procedure is used to

continuously refine and insure the quality of requirements list through the elicitation,

specification and validation process, mainly more efforts should be put to improve

requirements elicitation in order to handle the changing nature of requirements [1, 5],

this requires using suitable methods for an iterative elicitation process. In our research,

50% of respondents stated that using iterative method like prototyping helped them

better understand their client needs and manage the development process, as the clients

witnessed the information they provided revolving into a working product, they were

more excited about contributing in the development process. On the other hand, the

'knowledge diffusion' created by the prototype helped clients repair any wrong or

inappropriate requirement they had provided previously or provide any missing ones.

Moreover, implementing iterative elicitation process improved product quality as it

minimized product modifications, especially after delivery modifications, which made

the development process more profitable for both clients and development companies.

Conclusion

Software quality is a critical issue in software development; many systems failed or

were evaluated to have poor quality as they don’t provide the essential business

functions. The quality problem occurs due to the defect in the requirement management

process, a big gap exists between theory and practice in requirements area because it's

usually considered to be less important than other development activities. Problems in

requirements occur either because the elicitation process is not a systematic one or

because the standardized process is not performed correctly, which will cause the

wrong requirements to be elicited and the wrong product to be built.

Ideal elicitation process should deal with problems of scope, communication, and

requirements volatility. Implementing an iterative elicitation process on one hand can

manage the changing nature of requirements and facilitate communication between the

communities participating in the development process on the other hand, which

minimizes requirements errors and improves the overall software quality.

 6

References:

[1] Christel, Michael G. and Kang, Kyo C., Issues in Requirements Elicitation, 1992.

[2] Etien, Anne and Salinesi, Camelli, Managing Requirements in a Co-Evolution

Context, 2005

[3] Fitzpatrick, Ronan, O’Shea, Brendan and Smith, Peter, Software Quality Revisited.

[4] Herlea, Daniela Elena, Users' Involvement in the Requirements Engineering Process.

[5] Hickey, Ann M. and Davis, Alan M., Requirements Elicitation and Elicitation

Technique Selection: A Model for Two Knowledge-Intensive Software Development

Processes, 2002.

[6] Hochmüller, Elke, Quality Improvement Through Quality Requirements

Management.

[7] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Software

Engineering Terminology.

[8] Lanman, Jeremy T., Software Quality – Measurements and Management, November

2001.

[9] Leite, Julio Cesar S P., A Survey on Requirements Analysis. Advanced Software

Engineering Project Technical Report RTP-071, University of California at Irvine,

Department of Information and Computer Science, June 1987.

[10] Mead, Nancy R., Requirements Engineering for Survivable Systems,

September 2003.

[11] Nuseibeh, Bashar and Easterbrook, Steve, Requirements Engineering: A Roadmap

[12] Playle, Greg and Schroeder, Charles, Software Requirements Elicitation:

Problems, Tools, and Techniques.

[13] Software quality paper: Requirements management potential and trends

SQS software quality systems, March 2006.

[14] Toro, A. Duran, Jimenez, B. Bernardez, Cortes, A. Ruiz, and Bonilla, M. Toro., A

Requirements Elicitation Approach Based in Templates and Patterns

