
ICICT=2012

A Stream-Based Selectivity Estimation Technique for
Forward Xpath

muath alrammal and gaétan Hains

Université Paris Est, France

muath.alrammal@u-pec.fr , gaetan.hains@u-pec.fr

ABSTRAT

 Extensible Markup Language (XML) rapidly establishes

itself as the de facto standard for presenting, storing, and

exchanging data on the Internet. However, querying large

volume of XML data represents a bottleneck for several

computationally intensive applications. A fast and accurate

selectivity estimation mechanism is of practical importance

because selectivity estimation plays a fundamental role in XML

query performance. Recently proposed techniques are all

based on some forms of structure synopses that could be time-

consuming to build and not effective for summarizing complex

structure relationships. To overcome this limitation, we

propose an innovative selectivity estimation algorithm, which

consists of (1) the path tree synopsis data structure, a succinct

description of the original document with low computational

overhead and high accuracy for processing tasks like

selectivity estimation, (2) the streaming selectivity estimation

algorithm which is efficient for path tree traversal. Extensive

experiments on both real and synthetic datasets show that our

technique achieves better accuracy and less construction time

than existing approaches.

Keywors

XML data, XPath queries, query optimization, stream

processing, selectivity estimation.

1. INTRODUCTIN

XML [6] is currently being heavily pushed by the industry

and community as the lingua franca for data representation

and exchange on the Internet. The popularity of XML has created

several important applications like information dissemination,

processing of the scientific data, and real time news.

Query languages like XPath [4] and XQuery [5] have been

proposed for accessing XML data. They provide a syntax for

specifying which elements and attributes are sought to retrieve

specific pieces of a document.

A stream of XML data is the depth-first, left-to-right traversal

of an XML document [6]. Cost-based optimization of XML

stream querying requires calculating the cost of XPath query

operators. Usually the cost of an operator for a given XPath

query depends heavily on the number of the final results returned

by the query in question, and the number of temporary

(intermediate) results that are buffered for its sub-queries [23].

Therefore, accurate selectivity estimation is necessary for

cost-based optimization, but insufficient as we explain below.

 Selectivity is a count of the number of matches for a query

Q evaluated on an XML document D. This selectivity does not

measure neither the size of these matches, nor the total amount of

memory allocated for the temporary results. In addition, there are

many parameters that influence streaming computational costs:

the lazy vs eager strategy of the stack-automaton, the size and

quantity of query results which depend on the query operator,

the size and structure of the document , etc. The author of an

XPath query may have no immediate idea of what to expect in

memory consumption and delay before collecting all the resulting

sub-documents .

 As a result, the current selectivity estimation techniques appear

necessary but incomplete for managing queries on large

documents accessed as streams. We therefore propose a new

stream-based selectivity estimation technique. We compute the

path tree, a synopsis data structure from the input XML document

D. The purpose is to obtain a small but full structure synopsis

that is traversed by an efficient streaming algorithm to reduce the

computational overhead of complex XPath queries on D.

 The remainder of the paper is structured as follows: the next

section is a short survey of existing work on synopses data

structures and twigs selectivity estimation. In the third section,

we present our motivations and contributions. The fourth section

presents our stream-based selectivity estimation technique. In

the fifth section we compare our technique with the existing

ones, and the paper then concludes with an outline of future

work.

2. RELATED WORK

 Various research works in estimating the selectivity of XPath

queries have been published. The majority [1] [14] [13] [22] [11]

have focused on linear XPath queries (e.g. //A//B/C). It is not

clear how these approaches can be extended to XPath twig queries

(quereis with predicates e.g. //A[.//B]/C) so as to cover a larger

fragment of XPath.

Several structure synopses, such as Correlated Suffix Trees

[7], Twig-Xsketch [17], TreeSketch [16], and XSeed [24], have

been proposed for twig query selectivity estimation. They

generally store some form of compressed tree structures and

simple statistics such as node counts, child node counts, etc. Due

to the loss of information, selectivity estimation heavily relies

on the statistical assumptions of independence and uniformity.

Consequently, they can suffer from poor accuracy when these

assumptions are not valid. The above proposed structures

synopses can not be evaluated by ordinary query evaluation

algorithms, they require specialized estimation algorithms.

mailto:muath.alrammal@u-pec.fr
mailto:gaetan.hains@u-pec.fr

ICICT=2012

 The authors of [7] proposed a correlated sub-path tree (CST),

which is a pruned suffix tree (PST) with set hashing signatures that

helps determine the correlation between branching paths when

estimating the selectivity of twig queries. The CST method is off-

line, handles twig queries, and supports substring queries on the leaf

values. The CST is usually large in size and has been

outperformed by [1] for simple path expressions.

Described in [17] the Twig-Xsketch is a complex synopsis

data structure based on XSketch synopsis [13] augmented

with edge distribution information. It was shown in [17] that

Twig-Xsketch yields estimates with significantly smaller errors

than correlated sub-path tree (CST). For the dataset XMark [18]

the ratio of er- ror for CST is 26% vs. 3% for Twig-Xsketch.

TreeSketch[16] is found on a partitioned representation of

nodes of the input graph-structured XML database. It extends the

capabilities of XSketch [13] and [17] Twig-Xsketch. It introduces

a novel concept of count-stability (C-stability) which is a

refinement of the previous F-stability of [13]. This refinement

leads to a better performance in the compression of the input

graph-structured XML database.

Paper [15] introduced XCLUSTER, which computes a

synopsis for a given XML document by summarizing both the

structure and the content of document. The XCLUSTER-based

synopsis data structure is a node- and edge-labelled graph, where

each node represents a sub-set of elements with the same tag,

and an edge connects two nodes if an element of the source node

is the parent of elements of the target node. Nodes and edges of

this graph are then equipped with special aggregate statistical

information.

Paper [24] proposed the XSeed synopsis to summarize the

structural information of XML data. The information is stored

in two structures, a kernel, which summarizes the uniform

information, and an HET (Hyper-Edge Table), which records

the irregular information. By treating the structural information

in a multi-layer manner, the XSeed synopsis is simpler and

more accurate than the TreeSketch synopsis. Moreover, XSeed

supports recursion by recording "recursion levels" and "recursive

path expression" in the synopses. However, although the

construction of XSeed is generally faster than that of

TreeSketch, it is still time-consuming for complex datasets.

Paper [12] proposed a sampling method named subtree

sampling to built a representative sample of XML which

preserves the tree structure and relationships of nodes. The

number of data nodes for each tag name starting from the root

level is examined. If it is sufficiently large, a desired fraction of

data nodes are randomly selected using simple random sampling

without replacement and the entire subtrees rooted at these

selected data nodes are included as sampling units in the sample.

If a tag has few data nodes at the level under study, then all the

data nodes for that tag at the level are kept and they move

down to check the next level in the tree. The path from the root

to the selected subtrees are also included in the sample to preserve

the relationships among the sample subtrees. Though a subtree

sampling synopsis can be applied to aggregations functions such

as SUM, AVG, etc., it is shown in [12] that XSeed [24]

outperforms subtree sampling for queries with Parent/Child on

simple dataset e.g. XMark [18], while it is the inverse for

complex datasets.

3. MOTIVATIONS AND CONTRIBUTIONS

Having explored the state of the art, we summarize our

motivations as follows:

 A 2005 study [20] of Yahoo’s query logs revealed that 33%

of the queries from the same user were repeated and that 87%

of the time the user would click on the same result as earlier:

repeat queries are used to revisit information [20]. This

motivates our intense use of preprocessing: its cost can most

often be amortized. Moreover it is possible to update our

synopsis data structure by streamed and incremental updates.

 The proposed structures synopsis above (in section 2) can not

be evaluated by ordinary query estimation structure, they

require specialized estimation algorithms or rules.

 Though the construction time for structures synopsis vary,

for example: the construction of XSeed is generally faster

than that of TreeSketch as it is shown in [12]. The techniques

used for synopsis construction are still time-consuming for

complex datasets e.g. TreeBank [19].

 Most selectivity estimation techniques do not process the

complete fragment of Forward XPath (the grammar of this

frag ment is introduced in section 4.

Our contributions can be summarized as follows:

1. We present a new stream-based selectivity estimation

technique. Where, we present the path tree, a synopsis

structure for XML documents that is used for accurate

selectivity estimates. We formally define it and we

introduce a streaming algorithm to construct it.

Furthermore, we introduce an efficient selectivity

estimation algorithm for traversing the synopsis structure

to calculate the estimates. The algorithm is well suited to

be embedded in a cost-based optimizer.

2. Extensive experiments were performed. We considered

the accuracy of the estimations, the types of queries and

datasets that this synopsis can cover, the cost of the

synopsis to be created, and the estimated vs measured

memory allocated during query processing. Experiments

demonstrated that out technique is both accurate and

efficient.

4. STREAM-BASED SELECTIVITY

ESTIMATION TECHNIQUE

The stream-based selectivity estimation technique consists

of (1) the path tree structure synopsis: a concise, accurate, and

convenient summary of the structure of the XML document,

(2) the selectivity estimation algorithm: an efficient streaming

algorithm used to traverse the path tree synopsis to provide

the end user with different estimates which allow him to

optimize his query if needed.

ICICT=2012

 The current version of our selectivity technique processes queries

which belong to the fragment of Forward XPath: a sub fragment of

XPath 1.0 consisting of queries that have: child, descendant axis.

NodeTest which is either element, wildchard, ‘ text()’ . Predicate

with (‘or’,’not’, ‘and’) and arithmetic operations.

 For a precise understanding of Forward XPath, we illustrate

its grammar in figure 1. A location path is a structural pattern

com- posed of sub expressions called steps. Each step consists of

an axis (defines the tree-relationship between the selected nodes

and the current node), a node-test (identifies a node within an

axis), and zero or more predicates (to further refine the selected

node-set). An absolute location path starts with a ‘ /’ or ‘ / / ’

and a relative location path starts with a ‘. /’ or ‘. //’ . Where

/node() is a direct child, //node() is a descendant, [./node()] is a

child predicate node for refinement, and @node() is an attribute;

Figure 1: Grammar of Forward XPath

 Figure 2 illustrates our stream-based selectivity

estimation technique. As shown in the figure, the path tree

is built for the target XML document by using our

streaming algorithm (explained in section 4.1.2). After that,

the moment the end user sends an Xpath function estimator

provides the end user with query’s estimation by using the

path tree and the selectivity estimation (explained in section

4.2).

Figure 2: Stream-based selectivity estimation technique

Next, we will explain in details our technique.

4.1 Path tree
4.1.1 Path tree Definition

 The path tree is a concise, accurate, and convenient summary

of the structure of the XML dataset. It was invented by [1] but

with a more restricted application than ours. To achieve

conciseness, a path tree describes every distinct simple

node-labelled path of a source XML exactly once with its

frequency (the number of times it appears). To ensure accuracy,

the path tree does not contain node-labelled paths that do not

appear in the source XML dataset. The structure is convenient

because it can be processed by ordinary query evaluation

algorithms (stream-querying/stream-filtering algorithms) in place

of the actual dataset.

Given an XML dataset D, the path tree is (a tree with node labels

taken from D) defined as follows in figure 3. The details of path

tree construction and updating are in [3]. However, we present

below the pseudo code of the streaming algorithm for path tree

construction with an example.

Figure 3: Path tree definition

4.1.2 Path tree Construction

 To create a path tree from an XML dataset D, we consider that

D is equivalent to a DFA and its path tree is equal to a minimized

DFA. Minimization can be done by creating the DFA completely

then applying the automata minimizing algorithm [10]. Another

possibility which is more memory efficient is to generate the

minimized DFA directly. In this paper, we propose a streaming

algorithm which takes as input the SAX parser events of D and

creates directly its minimized automaton. We explain our

algorithm through the example below.

 The minimized automata is illustrated in figure 4 (autoTable).

We start by explaining the structure of this table. nName: is the

label of the node, where nName ∈ Σ(D) . depth: is the node’s

depthin D. nDown and nUp: are counters for naming the states

in the automata (e.g. 1, 2, ...etc.). Their initialized values = 0.

Note that δ(nDown, nName) = nU p. nFreq: is the frequency of

nName in D which have the same node-labelled path. nS ize: is

the size in byte of nName in D which have the same node-

labelled path. A stack named pathStack is used to store the node-

labelled path during the construction process of the path tree.

At each SAX event StartElement(nName), pathStack is pushed

with (nName, nDown), and at each EndElement(nName), the

top of pathStack is popped out.

 When < A > the root of D is read, depth = 1 then, we add A

with its information to accessAutoTable, autoTable and pathStack

(algorithm 1 lines 2 − 7). Note that nUp of A =0. When < B >

mailto:@node

ICICT=2012

with depth = 2 is read, the function checkS ameNodePath is called

(algorithm 1 line 9). As long B is not yet a member of

accessAutoTable (algorithm 2 line 1), then we add B with its

information to accessAutoTable, autoTable and pathStack

(algorithm 2 lines 21 − 27).

Figure 4: Path tree: Construction and Updating

 The value of nUp for B with de pth = 4 (which is already exist

in autoTable) is 3 (see algorithm 2 line 5 and autoTable). Also, in

pathStack the value nDown for the parent (de pth−1) of the received

B is 3 (see algorithm 2 line 6 and pathStack), both values are equals

because the parents of both nName B have the same node-labelled

path, which mean both nName B also have the same node-labelled

path. Therefore, we increment the frequency and size of B (see

algorithm 2 lines 8 − 11). If the node-labelled path of B was not

exist in autoTable (see algorithm 2 line 12), then node B with its

information is added (see algorithm 2 lines 13 − 19).

 When the second < B > with depth = 4 is read, B is already

a member of accessAutoTable (algorithm 2 line 1), therefore, we

check whether the node-labelled path of the received B exists or

not in autoTable (algorithm 2 lines 2 − 19).

 The moment < /A > (EndElement of the root) is processed,

the complete path tree can be generated and output in SAX

events syntax.

 The construction process is incremental, it allows constructing

different incomplete path trees before the construction of the

complete one. An incomplete path tree is the path tree for a

part of an XML dataset.

 Our streaming algorithm has time complexity O(|depth(D)|.|D|)

and space complexity O(|depth(D)|.|pathT ree(D)|).Where |D| is

thr XML dataset size

Path tree updating: when the underlying XML dataset is

updated, i.e. some elements are added or deleted, the path tree can

be incrementally updated using XML patch operations [21]. Due

to the space limitation, we explain this procedure by a short

example. Figure 4 shown an example of a patch operation to update

the XML dataset D. This operation adds an empty element L as a

last child under ”A/B” where element A is the root of D. The same

patch will be sent to the path tree (accessAutoTable and autoTable)

for updating. Thus, we check whether the node-labelled path of

L that is ABL exists or not in autoTable. In this example, it is not,

therefore we add the new node L with its information to

accessAutoTable and autoTable (see figure 4). Otherwise

(node-labeled path of L is exist), the frequency and the size of

node L will be updated as we shown in algorithm 2 (lines 7-11).

4.2 Selectivity Estimation Algorithm

ICICT=2012

 To enable the selectivity estimation process, we inspired our

selectivity estimation algorithm from LQ (the extended lazy

stream- querying algorithm of Gou and Chirkova work [9]).

Therefore, the advantages of this algorithm are the same as for

the lazy stream-querying algorithm. Detailed explanations about

LQ and its advantages are in [2].

Figure 5: Selectivity estimation algorithm

 Figure 5 illustrates our selectivity estimation algorithm. The

current version of our estimation algorithm processes queries

which belong to the fragment of Forward XPath. The estimation

algorithm takes two input parameters. The first one is the XPath

query that will be transformed to a query table statically using

our Forward XPath Parser. After that, the main function is called.

It reads the second parameter (the path tree) line by line

repeatedly, each time generating a tag. Based on that tag a

corresponding startBlock or endBlock function is called to process

it. Finally, the main function generates as output the estimations

needed for the given query.

 Estimations are: NumberOfMatches: the number of answer

ele- ments found during processing of the XPath query Q on the

XML document D. Cache: the number of elements cached in the

run-time stacks during processing of the XPath query Q on the

XML document D. They correspond to the axis nodes of Q.

Buffer: the number of potential answer elements buffered during

processing of the XPath query Q on the XML document D.

OutputSize: the total size in MiB of the number of answer

elements found during processing of the XPath query Q on the

XML document D. WorkingSpace: the total size in MiB for the

number of elements cached in the run-time stacks and the number

of potential answer elements buffered during processing of the

XPath query Q on the XML document D.

NumberOfPredEvaluation: the number of times the query’s

predicates are evaluated (their values are changed or passed from

an element to another).

 The algorithms 3, 4, 5 and 6 are the pseudo code of the stack

automaton (functions startBlock and endBlock) of our selectivity

estimation algorithm. Detailed explanation of our algorithm and

several examples on selectivity estimation process can be found

in [2]. However, the pseudo code and the selectivity estimation

process are explained through the example below.

4.2.1 Example on the Selectivity Estimation

 Figure 6 illustrates different snapshots of the evaluation

process of the path tree of D on the twig path

//A[.//C]/B[.//D]//E which returns E1(3), E2(1) as result

nodes. For each non-leaf node, the algorithm creates a stack.

Therefore, in this example, a stack is created for the root node

A and another one for the node B.

Figure 6: Snapshots of the run-time stacks for the evaluation of the

path tree of D on Q (//A[.//C]/B[.//D]//E)

 When < B2 > is read, the nodes A1(1), B1(1), and A2(1) were

read and pushed (with their information) in their stacks.

Concerning the node B2, it is also pushed (with its information) in

ICICT=2012

its stack B. Note that for each pushed node, the values of Cache

and W orkingSpace are updated. (algorithm 3 lines 16-17).

 When < D1 > is read, the node C1 was read, therefore, the value

of the predicate C of A2 was changed to true, and the value of

NumberOf PredEvaluation was updated. The node E1 was read,

therefore, E1 was buffered (with its information) to the potential

answers list of its parent node B2, and the values of Buf fer and

WorkingSpace were updated (algorithm 3 lines 13-14). Moreover,

by reading D1, the value of the predicate D of B2 was changed to

true and the value of NumberOf PredEvaluation was updated.

When < /A2 > is read, the node B2 was popped out from

its stack, and the true value of its predicate C was passed to its

ancestor B1, and the value of NumberOfPredEvaluation was

updated (algorithm 4 line 6). Furthermore, the potential answers

list of B2 was appended to the same list of its parent node A2

(algorithm 5 lines 8-9). Concerning A2, it is popped out of its

stack, and as long as it is the root node, the content of its

potential answers list is flushed as answers (algorithm 4 lines

13-14 then algorithm 5 lines 2-6).

When E2 is read, it is buffered (with its information) to the

potential answers list of its parent node B2, and the values of

Buffer and W orkingSpace are updated (algorithm 3 lines 13-14).

When < /B1 > is read, it is popped out from its stack and

its potential answers list is appended to the same list of its parent

node A1. Finally, when < /A1 > is read, it is popped out from its

stack, A1 is the root node, therefore, the content of its potential

answers list is flushed as answers (algorithm 4 lines 13-14 then

algorithm 5 lines 2-6).

The result of the XPath query estimation is as follows

(estimated values): NumberOfMatches: the value is 4, they are:

E1(3), E2(1) = 3 + 1 = 4. B u f f e r : in this example, the value of

Buffer is the same as NumberOfMatches. Cache: the value is

7, we present them based on their stacks as follows: stack A

contains A1(1), A2(2), while stack B contains B1(1), B2(3).

The value then 1 + 2 + 1 + 3 = 7. W oringSpace: its size

was estimated to 0.0002MiB. OutputSize: its size was estimated

to 0.00008MiB.

 The estimated values equal the real measured ones which

shows the accuracy of our selectivity estimation technique.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the accuracy of our technique by

using variety of XML datasets and complex queries. Furthermore,

we compare it with other approaches.

5.1 Experimental Setup
 We performed experiments on a MacBook with the

following technical specifications: Intel Core 2 Duo, 2.4 GHz,

4 GB RAM. The well known XML datasets XMark [18] and

TreeBank [19] were selected for the experiments. XMark is a

wide and shallow dataset, its size is 116MiB and its maximum

depth is 12. TreeBank is a deep and recursive dataset, its size is

86MiB and its maximum depth is 36. The average relative

error was used to measure the accuracy of our approach, it is

defined as follows

where Mi is the measured value of the i−th query in the

workload and Pi is its predicted one.

 Extensive testing and complex Forward XPath queries

were used in our experiments. For example, a complex XPath

query applied to XMark

//item[.//payment or .//shipping]//mailbox//mail[./date] and

to TreeBank //E MPTY [./S //N P[./∗] and .//V P]//∗/N NS.

5.2 Accuracy of selectivity estimation

technique

 Figure 7 illustrates the accuracy of our stream-based

selectivity estimation technique

ICICT=2012

Figure 7: Accuracy of selectivity estimation technique

 Our technique estimates the values of NumberOfMatches,

Cache, Buffer, OutputSize, and WorkingSpace. While the

different existing approaches estimate only the value of

NumberOfMatches.

As shown in the figure, the accuracy of our technique on both

datasets XMark and TreeBank is remarkable due to the

complete structure information of the path tree which

captures recursions in the dataset, and due to the efficiency of

our selectivity estimation algorithm which supports the

complete Forward XPath fragment. For example, in this figure,

the max value of average relative error is for

NumberOfMatches on TreeBank, it is less than 10%, so it is

like informing the end user that the number of matches for

an XPath query Q is 10 while in reality it is between 9 and 11.

5.3 Comparison with the existing

techniques.

In this section, we compare our approach with other existing

approaches.

5.3.1 Construction time for synopses

Figure 8: Construction time for synopses

 Few approaches present the time needed to construct their

synopses, like TreeSketch and XSeed. This is why in

figure 8, we compare the construction time of our synopsis

path tree with the same time needed for TreeSketch and

Xseed.

 Figure 8 shows the total construction time of TreeSktech,

XSeed and path tree synopses. We do not show the

construction time of the Subtree sampling synopsis because it

is not a structural one (as we already explained in section 2),

while for XCLUSTER and relational algebraic it is unknown.

 The construction time of the structural synopses largely

depends on the structure of the dataset. Our streaming

algorithm for building path tree outperforms considerably the

other approaches. The construction time for each of

TreeSktech and XSeed for TreeBank 86MiB (depth 36) took

more than 4 days (5760 minutes), this result was confirmed in

[12]. While for path tree, the construction time for the same

dataset took 244 minutes. Concerning XSeed, as the dataset

become more complex, performance degrades dramatically [12]

and construction time becomes significant. The construction

time of path tree for TreeBank 86MiB (depth 36) is 24 times

faster than XSeed (see figure 8).

5.3.2 Selectivity of structural queries: accuracy
and synopsis size

TreeSketch and XSeed can estimate the accuracy for the

number of matches (NumberOfMatches), while our approach

estimates the accuracy for: NumberOfMatches, Buffer, Cache,

and OutputSize, WorkingSpace . The accuracy of our approach

outperforms the accuracy of TreeSketch and XSeed due to the

complete structure of the path tree which captures the recursions

in the dataset, and due to the efficiency our modified LQ

algorithm which supports the complete Forward XPath

fragment. The size of the path tree varies according to structure

of the dataset. It is 10% of the size of TreeBank and 0.00006%

of the size of XMark.

In all cases, an efficient streaming algorithm is used to

traverse the path tree to avoid any computational overhead.

Note that to control the space budget (synopsis size), it is

possible to use a very partial, hence small path tree, to use no

more space than competing approaches, but the accuracy of

selectivity estimation will then be much lower.

The construction time for TreeSketch took more than 4 days.

Actually we did stop the building process of its synopsis after

4 days. We faced the same situation for XSeed, but the

difference between them that XSeed synopsis (as mentioned

before) consists of two parts, an XSeed kernel and a hyper-edge

table (HET). The kernel was built very fast, but the HET took

more than 4 fays, this is why we did stop the construction

process of HET. As long as, we could not build the synopsis of

tree TreeSketch, and due to the fact that, the accuracy of XSeed

outperforms the one of TreeSketch [24] [12], in figure 9 we

compare our approach with the kernel of XSeed. We noticed

that XSeed does not process queries with nested predicates and

predicates with ‘or’, ‘ not’, ‘ and’, therefore, we refine and

simplify the queries used in this experiment.

Figure 9: Accuracy of selectivity estimation techniques

As showed in figure 9, the average relative error of XSeed

is almost 12 times higher than the same error for our approach.

ICICT=2012

5.3.3 Further Comparison

The fragment of XPath: the XPath fragment covered by our

approach is more general than the one used by XSeed and

TreeSketch. The TreeSketch query language does not support

queries with ‘text()’ [12] or with nested predicates. The XSeed

query language does not support queries with ‘text()’, queries

with nested predicates or queries with predicate which contain

‘and’, ‘or’, ‘not’.

Incremental update of synopsis: minimal synopsis size

seems desirable but won’t be the best because incremental

maintenance would be difficult [8]. This is the case of

TreeSketch and XSeed. While path tree preserves the same

structure as the structure of its original XML dataset. So any

language used to update the XML dataset can be used to update

the path tree. Therefore, incremental update is possible, for

example, by using the patch operations as we explained in

section 4.1.2.

6.CONCLUSION AND PERSPECTIVES
 In this paper, we presented our stream-based selectivity

estimation technique. It uses the path tree synopsis and an

efficient selectivity estimation algorithm to provide the end user

with different estimations which allow him to optimize his

queries. Extensive experiments were performed to evaluate

our technique. We considered the accuracy of estimations, the

types of queries and datasets that the selectivity estimation

technique can cover, and the cost of the synopsis to be

created. Experiments demonstrated that our tech nique is

accurate and outperforms the existing approaches.

 As an undergoing research, we study how to compute a

synopsis for a given XML dataset by summarizing both the

structure and the content of the dataset

6. ACKNOWLEDGEMENT
 The authors thank M. Zergaoui president of Innovimax

SARL for financial support in the form of a CIFRE scholarship

for M. Alrammal, for suggesting the initial problem statement

and participating in this work's supervision. Financial support

from ANRT is also gratefully acknowledged

 8. REFERENCES

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the

Selectivity of XML Path Expressions for Internet Scale

Applications. In Proc. Of the 27th (VLDB), pages 591 – 600, 2001.

[2] M. Alrammal. Algorithms for XML Stream Processing: Massive

Data, External Memory and Scalable Performance. Thesis,

Université Paris-Est, 2011.

http://lacl.univ=paris12.fr/Rapports/TR/muth_thesis.pdf.

[3] M. Alrammal, G. Hains, and M. Zergaoui. Path tree:

Document Synopsis for XPath Query Selectivity

Estimation.

IEEE, In Proc. of the 5th (CISIS), pages 321–328, 2011.

[4] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M.

Kay, J. Robie, and J. Siméon. XML Path Language (XPath)

2.0. 14 December 2010. http://www.w3.org/TR/2010/REC-

xpath20-20101214/.

[5] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J.

Robie, and J. Siméon. XQuery 1.0: An XML Query

Language (Second Edition). 14 December 2010.

 http://www.w3.org/TR/2010/REC-xquery-20101214/.

[6] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and F. Yergeau.

Extensible Markup Language (XML) 1.0 (fifth edition). 26

November 2008.

 http://www.w3.org/TR/REC-xml/.

[7] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas,

S. Muthukrishnan, R. T. Ng, and D. Srivastava. Counting
Twig Matches in a Tree. In Proc. of the 17th (ICDE), pages

595 – 604, 2001.

[8] R. Goldman and J. Widom. DataGuides: Enabling Query

Formulation and Optimization in Semistructured Databases. In

Proc. of the 23rd (VLDB), pages 436–445, August 1997.

[9] G. Gou and R. Chirkova. Efficient Algorithms for Evaluating

XPath over Streams. In Proc. of the 2007 ACM SIGMOD, pages

269–280, 2007.

[10] J. Hopcroft and J. Ullman. Introduction to Automata Theory,

Language, and Computation. 1979.

[11] C. Luo, Z. Jiang, W.-C. Hou, F. Yan, and C.-F. Wang. Estimating

XML Structural Join Size Quickly andEconomically. In Proc. of

the 22nd (ICDE), 2006.

[12] C. Luo, Z. Jiang, W.-C. Hou, F. Yu, and Q. Zhu. A Sampling

Approach for XML Query Selectivity Estimation. In Proc. of

the (EDBT), pages 335–344, 2009.

[13] N. Polyzotis and M. Garofalakis. Statistical Synopses for

Graph-structured XML Databases. In Proc. of the 2002 ACM

SIGMOD, pages 358–369, 2002.

[14] N. Polyzotis and M. Garofalakis. Structure and Value Synopses

for XML Data Graphs. In Proc. of the 28th (VLDB), pages

466–477, 2002.

[15] N. Polyzotis and M. N. Garofalakis. XCluster Synopses for

Structured XML Content. In Proc. of (ICDE), 2006.

[16] N. Polyzotis, M. N. Garofalakis, and Y. Ioannidis.Approximate

XML Query Answers. In Proc. of the 2004 ACM SIGMOD,

pages 263–274, 2004.

[17] N. Polyzotis, M. N. Garofalakis, and Y. Ioannidis. Selectivity

Estimation for XML Twigs. In Proc. of the (ICDE), 2004.

[18] A. Schmidt, R. Busse, M. Carey, M. K. D. Florescu, I.

Manolescu, and F. Waas. Xmark: An XML Benchmark Project.

Technical report, 2001. http://www.xml-

benchmark.org/.

[19] D. Suciu. Treebank: XML Data Repository. Technical report,

University of Pennsylvania Treebank Project, Novmber 1992.

http://www.cs.washington.edu/research/xmldatasets.

[20] J. Teevan, E. Adar, R. Jones, and M. Potts. History Repeats

Itself: Repeat Queries in Yahoo’s Query Logs. In Proceedings

of the 29th Annual ACM Conference on Research and

Development in Information Retrieval (SIGIR), pages 703–704,

2005.

[21] J. Urpalainen. XML Patch Operations Framework Utilizing

XPath Selectors. Network Working Group, 2008.

http://datatracker.ietf.org/doc/rfc5261/.

[22] W. Wang, H. Jiang, H. Lu, and J. X.Yu. Containment Join Size

Estimation: Models and Methods. In Proc. of the 2002 ACM

SIGMOD, pages 145–156, 2003.

[23] N. Zhang, P. Haas, V. Josifovski, G. Lohman, and C. Zhang.

Statistical Learning Techniques for Costing XML Queries. In

Proc. of the 31st (VLDB), pages 289–300, 2005.

[24] N. Zhang, M. T. Ozsu, A. Aboulnaga, and I. F. Ilyas. XSeed:

Accurate and Fast Cardinality Estimation for XPath Queries. In

Proc. of the 20th (ICDE), 2006

http://lacl.univ=paris12.fr/Rapports/TR/muth_thesis.pdf
http://www.w3.org/TR/2010/REC-xpath20-20101214/
http://www.w3.org/TR/2010/REC-xpath20-20101214/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/REC-xml/
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/
http://www.cs.washington.edu/research/xmldatasets
http://datatracker.ietf.org/doc/rfc5261/

