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ABSTRAT 

     Extensible Markup Language (XML) rapidly establishes 

itself as the de facto standard for presenting, storing, and 

exchanging data on the Internet.  However, querying large  

volume of XML data represents a bottleneck for several  

computationally intensive applications.  A fast and accurate 

selectivity estimation mechanism is of practical  importance 

because selectivity estimation plays a fundamental role in XML 

query performance. Recently proposed techniques are all 

based on some forms of structure synopses that could be time-

consuming to build and not effective for summarizing complex 

structure relationships.  To overcome this limitation, we 

propose an innovative selectivity estimation algorithm, which 

consists of (1) the path tree synopsis data structure, a succinct 

description of the original document with low  computational  

overhead and high accuracy for processing tasks like 

selectivity estimation, (2) the  streaming selectivity estimation 

algorithm which is efficient for path tree traversal.  Extensive 

experiments on both real and synthetic datasets show that our 

technique achieves better accuracy and less construction time 

than existing approaches. 
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1. INTRODUCTIN 

 
XML [6] is currently being heavily pushed by the industry 

and community as the lingua franca  for data  representation 

and exchange on the Internet. The popularity of XML has created 

several important applications like information dissemination, 

processing of the scientific data, and real time news. 

Query languages like XPath [4] and XQuery [5] have been 

proposed for accessing XML data.  They provide a syntax for 

specifying which elements and attributes are sought to retrieve 

specific pieces of a document. 

A stream of XML data is the depth-first, left-to-right traversal 

of an XML document [6].  Cost-based optimization of XML 

stream querying requires calculating  the cost of XPath query 

operators. Usually the cost of an operator for a given XPath 

query depends heavily on the number of the final results returned 

by the query in question, and the number of temporary 

(intermediate) results that are buffered for its sub-queries [23]. 

Therefore, accurate selectivity estimation is necessary for          

cost-based optimization, but insufficient as we explain below. 

 

    Selectivity is a count of the number of matches for a query 

Q evaluated on an XML document D. This selectivity does not   

measure neither the size of these matches, nor the total amount of 

memory allocated for the temporary results. In addition, there are 

many parameters that influence streaming computational costs: 

the lazy vs eager strategy of the stack-automaton, the size and 

quantity of query results which depend on  the  query operator, 

the size and structure of the document , etc. The author of an 

XPath query may have no immediate idea of what to expect in 

memory consumption and delay before collecting all the resulting 

sub-documents . 

 

  As a result, the current selectivity estimation techniques  appear 

necessary but incomplete for managing queries on large 

documents accessed as streams. We therefore propose a new 

stream-based   selectivity estimation technique. We compute the 

path tree, a synopsis data structure from the input XML document 

D. The purpose is to obtain a small but full structure synopsis 

that is traversed by an efficient streaming algorithm to reduce the 

computational overhead of complex XPath queries on D. 

 

   The remainder of the paper is structured as follows: the next   

section is a short survey of existing work on synopses data 

structures and twigs selectivity estimation.  In the third section, 

we present our motivations and contributions. The fourth section 

presents our stream-based selectivity estimation technique. In 

the fifth section we compare our technique with the existing 

ones, and the paper then concludes with an outline of future 

work. 

 

2. RELATED WORK 
 

    Various research works in estimating the selectivity of  XPath 

queries have been published. The majority [1] [14] [13] [22] [11] 

have focused on linear XPath queries (e.g. //A//B/C).   It is not 

clear how these approaches can be extended to XPath twig queries 

(quereis with predicates e.g. //A[.//B]/C) so as to cover a larger 

fragment of XPath. 

Several structure synopses, such as Correlated Suffix Trees 

[7], Twig-Xsketch [17], TreeSketch [16], and XSeed [24], have 

been proposed for twig query selectivity estimation. They 

generally store some form of compressed tree structures and 

simple statistics such as node counts, child node counts, etc. Due 

to the loss of   information, selectivity estimation heavily relies 

on the statistical assumptions of independence and uniformity. 

Consequently, they can suffer from poor accuracy when these 

assumptions are not valid. The above proposed structures 

synopses can not be evaluated by ordinary query evaluation 

algorithms, they require specialized estimation algorithms. 
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    The authors of [7] proposed a correlated sub-path tree (CST), 

which is a pruned suffix tree (PST) with set hashing signatures that 

helps determine the correlation between branching paths when   

estimating the selectivity of twig queries. The CST method is off-

line, handles twig queries, and supports substring queries on the leaf 

values. The CST is usually large in size and has been 

outperformed by [1] for simple path expressions. 

Described in [17] the Twig-Xsketch is a complex synopsis 

data structure based on XSketch synopsis [13] augmented  

with edge distribution information. It was shown in [17] that 

Twig-Xsketch yields estimates with significantly  smaller errors 

than correlated sub-path tree (CST). For the dataset XMark [18] 

the ratio of er- ror for CST is 26% vs. 3% for Twig-Xsketch. 

 

TreeSketch[16] is found on a partitioned representation of 

nodes of the input graph-structured XML database. It extends the   

capabilities of XSketch [13] and [17] Twig-Xsketch. It introduces 

a novel concept of count-stability (C-stability) which is a 

refinement of the previous F-stability of [13]. This refinement 

leads to a better performance in the compression of the input 

graph-structured XML database. 

 

Paper [15] introduced XCLUSTER, which computes a 

synopsis for a given XML document by summarizing both the 

structure and the content of document.  The  XCLUSTER-based 

synopsis data structure is a node- and edge-labelled graph, where 

each node   represents a sub-set of elements with the same tag, 

and an edge connects two nodes if an element of the source node 

is the parent of elements of the target node. Nodes and edges of 

this graph are then equipped with special aggregate statistical 

information. 

 

Paper [24] proposed the XSeed synopsis to summarize the   

structural information of XML data.  The information is stored 

in two structures, a kernel, which summarizes the  uniform 

information, and an HET (Hyper-Edge Table),  which records 

the irregular information.  By treating the structural information 

in a multi-layer manner, the XSeed  synopsis is simpler and 

more accurate than the TreeSketch synopsis. Moreover, XSeed 

supports recursion by recording "recursion levels" and "recursive 

path expression" in the synopses. However, although the 

construction of XSeed is generally faster than that of 

TreeSketch, it is still time-consuming for complex datasets. 

 

Paper [12] proposed a sampling method named subtree 

sampling to built a representative sample of XML which 

preserves the tree structure and relationships of nodes.   The  

number of data nodes for each tag name starting from the root 

level is examined.  If it is sufficiently large, a desired fraction of 

data nodes are randomly selected using simple random sampling 

without replacement and the entire subtrees rooted at these 

selected data nodes are included as sampling units in the sample. 

If a tag has few data nodes at the level under study, then all the 

data nodes for that tag at the level are kept and they move 

down to check the next level in the tree. The path from the root 

to the selected subtrees are also included in the sample to preserve 

the relationships among the sample subtrees. Though a subtree 

sampling synopsis can be applied to aggregations functions such 

as SUM, AVG, etc., it is shown in  [12] that XSeed [24] 

outperforms subtree sampling for queries with Parent/Child  on 

simple dataset e.g. XMark [18], while it is the inverse for  

complex datasets. 

 

3. MOTIVATIONS  AND CONTRIBUTIONS 

 

Having explored the state of the art, we summarize our   

motivations as follows: 

 A 2005 study [20] of Yahoo’s query logs revealed that 33% 

of the queries from the same user were repeated and that 87% 

of the time the user would click on the same result as earlier: 

repeat queries are used to revisit information [20]. This 

motivates our intense use of preprocessing: its cost can most 

often be amortized. Moreover it is possible to update our 

synopsis data structure by streamed and incremental updates. 

 

 The proposed structures synopsis above (in section 2) can not 

be evaluated by ordinary query estimation structure, they 

require specialized estimation algorithms or rules. 

 

 Though the construction time for structures synopsis  vary, 

for example:  the construction of XSeed is generally faster 

than that of TreeSketch as it is shown in [12]. The techniques 

used for synopsis construction are still time-consuming for 

complex datasets e.g. TreeBank [19]. 

 

 Most selectivity estimation techniques do not process the 

complete fragment of Forward XPath (the grammar of this 

frag ment is introduced in section 4. 

 

Our contributions can be summarized as follows: 

1. We present a new stream-based selectivity estimation   

technique. Where, we present the path tree, a synopsis 

structure for XML documents that is used for accurate 

selectivity estimates. We formally define it and we 

introduce a streaming algorithm to construct it. 

Furthermore, we introduce an efficient selectivity 

estimation algorithm for traversing the synopsis structure 

to calculate the estimates.  The algorithm is well suited to 

be embedded in a cost-based optimizer. 

 

2. Extensive experiments were performed. We considered 

the accuracy of the estimations, the types  of queries and  

datasets that this synopsis can cover, the cost of the 

synopsis to be created, and the estimated vs measured 

memory allocated during query processing. Experiments 

demonstrated that out technique is both accurate and 

efficient. 

4. STREAM-BASED SELECTIVITY     

ESTIMATION TECHNIQUE 

 
The stream-based selectivity estimation technique consists 

of (1) the path tree structure synopsis: a concise, accurate, and 

convenient summary of the structure of the XML document, 

(2) the selectivity estimation algorithm: an efficient streaming 

algorithm used to   traverse the path tree synopsis to provide 

the end user with different estimates which allow him to 

optimize his query if needed. 
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   The current version of our selectivity technique processes queries 

which belong to the fragment of Forward XPath: a sub fragment of 

XPath 1.0 consisting of queries that have:  child, descendant axis. 

NodeTest which is either element,  wildchard, ‘ text()’ . Predicate 

with (‘or’,’not’, ‘and’) and arithmetic operations. 

   For a precise understanding of Forward XPath, we  illustrate 

its grammar in figure 1.  A location path is a structural pattern 

com- posed of sub expressions called steps. Each step consists of 

an axis (defines the tree-relationship between the selected nodes 

and the current node), a node-test (identifies a node within an 

axis), and zero or more predicates (to further refine the  selected 

node-set). An absolute location path starts with a ‘ /’ or ‘ / / ’   

and a relative location path starts with a ‘. /’  or ‘. //’ .  Where 

/node() is a direct child, //node() is a descendant, [./node()] is a 

child predicate node for refinement, and @node() is an attribute; 

 

Figure 1: Grammar of Forward XPath 

 

   Figure 2 illustrates our stream-based selectivity 

estimation  technique.  As shown in the figure, the path tree 

is built for the target XML document by using our 

streaming  algorithm (explained in section 4.1.2). After that, 

the moment the end user sends an Xpath function estimator 

provides the end user with query’s estimation by using the 

path tree and the selectivity estimation (explained in section 

4.2). 

 

 

Figure 2: Stream-based selectivity estimation technique 

 

Next, we will explain in details our technique. 

 

4.1 Path tree 
4.1.1 Path tree Definition 

 
  The path tree is a concise, accurate, and convenient  summary 

of the structure of the XML dataset.  It was invented by [1] but 

with a more restricted application than ours. To achieve 

conciseness, a path tree describes every distinct simple            

node-labelled path of a source XML exactly once with its 

frequency (the number of times it appears).  To ensure accuracy, 

the path tree does not contain node-labelled paths that do not 

appear in the source XML dataset. The structure is convenient 

because it can be processed by ordinary query evaluation 

algorithms (stream-querying/stream-filtering algorithms) in place 

of the actual dataset. 

 
Given an XML dataset D, the path tree is (a tree with node labels 

taken from D) defined as follows in figure 3. The details of path 

tree construction and updating are  in [3]. However, we present 

below the pseudo code of the streaming  algorithm for path tree 

construction with an example. 

 

 

Figure 3: Path tree definition 

 

4.1.2 Path tree Construction 

 
      To create a path tree from an XML dataset D, we consider that 

D is equivalent to a DFA and its path tree is equal to a minimized 

DFA. Minimization can be done by creating the DFA completely 

then applying the automata minimizing algorithm [10]. Another 

possibility which is more memory efficient is to generate the    

minimized DFA directly. In this paper, we propose a streaming 

algorithm which takes as input the SAX parser events of D and  

creates directly its minimized automaton. We explain our 

algorithm through the example below.  

     The minimized automata is illustrated in figure 4  (autoTable). 

We start by explaining the structure of this table.  nName: is the 

label of the node, where nName ∈ Σ(D) . depth: is the node’s 

depthin D.  nDown and nUp: are counters for naming the states 

in the automata (e.g.  1, 2, ...etc.). Their initialized values =  0.   

Note that δ(nDown, nName) = nU p. nFreq: is the frequency of 

nName in D which have the same node-labelled path.  nS ize: is 

the size in byte of nName in  D which have the same node-

labelled path. A stack named pathStack is used to store the node-

labelled path during the construction process of the path tree. 

At  each  SAX event StartElement(nName), pathStack is  pushed 

with (nName, nDown), and at each  EndElement(nName), the 

top of pathStack is popped out. 

   When <  A > the root of D is read, depth =  1 then, we add A  

with its information to accessAutoTable, autoTable and pathStack 

(algorithm 1 lines 2 − 7).  Note that nUp of A =0.  When <  B > 
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with depth = 2 is read, the function checkS ameNodePath is called 

(algorithm 1 line 9). As long B is not yet a member of 

accessAutoTable (algorithm 2 line 1), then we add B with its 

information  to  accessAutoTable, autoTable and pathStack 

(algorithm 2 lines 21 − 27). 

 

 

Figure 4: Path tree: Construction and Updating 

 

    The value of nUp for B with de pth = 4 (which is already exist 

in autoTable) is 3 (see algorithm 2 line 5 and autoTable). Also, in 

pathStack the value nDown for the parent (de pth−1) of the received 

B is 3 (see algorithm 2 line 6 and pathStack), both values are equals 

because the parents of both nName B have the same node-labelled 

path, which mean both nName B also have the same node-labelled 

path.   Therefore, we increment the frequency and size of B (see 

algorithm 2 lines 8 − 11).  If the node-labelled path of B was not 

exist in autoTable (see algorithm 2 line 12), then node B with its 

information is added (see algorithm 2 lines 13 − 19). 

 

    When the second <  B > with depth =  4 is read, B is already 

a member of accessAutoTable (algorithm 2 line 1), therefore, we 

check whether the node-labelled path of the received B exists or 

not in autoTable (algorithm 2 lines 2 − 19).  

     The moment <  /A  > (EndElement of the root) is processed, 

the complete path tree can be generated and  output in SAX 

events syntax. 

     The construction process is incremental, it allows  constructing 

different incomplete path trees before the construction of the 

complete one.    An incomplete path  tree is the path tree for a 

part of an XML dataset.  

  Our  streaming algorithm has time complexity O(|depth(D)|.|D|) 

and space complexity  O(|depth(D)|.|pathT ree(D)|).Where |D| is 

thr XML dataset size 

 

Path tree updating:  when the underlying XML dataset is 

updated, i.e. some elements are added or deleted, the path tree can 

be incrementally updated using XML patch operations [21].  Due 

to the space limitation, we explain this procedure by a short 

example. Figure 4 shown an example of a patch operation to update 

the XML dataset D.  This operation adds an empty element L as a 

last child under ”A/B” where element A is the root of D. The same 

patch will be sent to the path tree (accessAutoTable and autoTable) 

for updating.  Thus, we check whether the node-labelled path of 

L that is ABL exists or not in autoTable. In this example, it is not, 

therefore we add the new node L with its information to 

accessAutoTable and autoTable (see figure 4). Otherwise      

(node-labeled path of L is exist), the frequency and the size of 

node L will be updated as we shown in algorithm 2 (lines 7-11). 

4.2 Selectivity Estimation Algorithm 
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  To enable the selectivity estimation process, we inspired our      

selectivity estimation algorithm from LQ (the extended lazy 

stream- querying algorithm of Gou and Chirkova work [9]). 

Therefore, the advantages of this algorithm are the same as for 

the lazy stream-querying algorithm. Detailed explanations about 

LQ and its advantages are in [2]. 

 

Figure 5: Selectivity estimation algorithm 

 

      Figure 5 illustrates our selectivity estimation algorithm. The  

current version of our estimation algorithm processes queries 

which belong to the fragment of Forward XPath. The estimation 

algorithm takes two input parameters. The first one is the XPath 

query that will be transformed to a query table statically using 

our Forward XPath Parser. After that, the main function is called. 

It reads the second parameter (the path tree) line by line 

repeatedly, each time generating a tag. Based on that tag a 

corresponding startBlock or endBlock function is called to process 

it. Finally, the main function generates as output the estimations 

needed for the given query. 

     Estimations are: NumberOfMatches: the number of answer 

ele- ments found during processing of the XPath query Q on the 

XML document D. Cache: the number of elements cached in the 

run-time stacks during processing of the XPath query Q on the 

XML document D. They correspond to the axis nodes of Q. 

Buffer: the number of potential answer elements buffered during 

processing of the XPath query Q on the XML document D. 

OutputSize: the total size in MiB of the number of answer 

elements found during processing of the XPath query Q on the 

XML document D. WorkingSpace: the total size in MiB for the 

number of elements cached in the run-time stacks and the number 

of potential answer elements buffered during processing of the 

XPath query Q on the XML document D. 

NumberOfPredEvaluation: the number of times the query’s 

predicates are evaluated (their values are changed or passed from 

an element to another). 
 

    The algorithms 3, 4, 5 and 6 are the pseudo code of the stack 

automaton (functions startBlock and endBlock) of our selectivity 

estimation algorithm.  Detailed explanation of our algorithm and 

several examples on selectivity  estimation process can be found 

in [2]. However, the  pseudo code and the selectivity estimation 

process are explained through the example below. 

4.2.1 Example on the Selectivity Estimation 

   Figure 6 illustrates different snapshots of the evaluation 

process of the path tree of D on the twig path 

//A[.//C]/B[.//D]//E which returns E1(3), E2(1) as result 

nodes. For each non-leaf node, the algorithm creates a stack.  

Therefore, in this example, a stack is created for the root node 

A and another one for the node B. 

 

 

Figure 6: Snapshots of the run-time stacks for the evaluation of the 

path tree of D on Q (//A[.//C]/B[.//D]//E) 
 

   When <  B2 > is read, the nodes A1(1), B1(1), and A2(1) were 

read and pushed (with their information) in their stacks. 

Concerning the node B2, it is also pushed (with its information) in 
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its stack B. Note that for each pushed node, the values of Cache 

and W orkingSpace are updated. (algorithm 3 lines 16-17). 

 

    When < D1 > is read, the node C1 was read, therefore, the value 

of the predicate C of A2 was changed to true, and  the value of 

NumberOf PredEvaluation was updated. The node E1 was read, 

therefore, E1 was buffered (with its information) to the potential 

answers list of its parent node B2, and the values of Buf fer  and 

WorkingSpace were updated (algorithm 3 lines 13-14). Moreover, 

by reading D1, the value of the predicate D of B2 was changed to 

true and the value of NumberOf PredEvaluation was updated. 

 

When <  /A2  > is read, the node B2 was popped out from 

its stack, and the true value of its predicate C was passed to its   

ancestor B1, and the value of NumberOfPredEvaluation was 

updated (algorithm 4 line 6).  Furthermore, the potential answers 

list of B2 was appended to the same list of its parent node A2 

(algorithm 5 lines 8-9). Concerning A2, it is popped out of its 

stack, and as long as it is the root node, the content of its 

potential  answers list is flushed as answers (algorithm 4 lines   

13-14 then algorithm 5 lines 2-6). 

 

When E2 is read, it is buffered (with its information) to the   

potential answers list of its parent node B2, and the values of 

Buffer and W orkingSpace are updated (algorithm 3 lines 13-14). 

When <  /B1  > is read, it is popped out from its stack and 

its potential answers list is appended to the same list of its parent 

node A1. Finally, when < /A1 > is read, it is popped out from its 

stack, A1 is the root node, therefore, the content of its potential 

answers list is flushed as answers (algorithm 4 lines 13-14 then 

algorithm 5 lines 2-6). 

 

The result of the XPath query estimation is as follows          

(estimated values): NumberOfMatches: the value is 4, they are: 

E1(3), E2(1) = 3 + 1 = 4. B u f f e r : in this example, the value of 

Buffer is the same as NumberOfMatches.  Cache:  the value is 

7, we present them based  on their stacks as follows:  stack A 

contains A1(1), A2(2),  while stack B contains B1(1), B2(3).   

The value then 1 + 2 + 1 + 3  =  7.  W oringSpace:  its size 

was estimated to 0.0002MiB. OutputSize: its size was estimated 

to 0.00008MiB. 

      The estimated values equal the real measured ones which 

shows the accuracy of our selectivity estimation technique. 

5. EXPERIMENTAL RESULTS 

In this section, we demonstrate the accuracy of our technique by 

using variety of XML datasets and complex queries. Furthermore, 

we compare it with other approaches. 

 

5.1 Experimental Setup 
        We performed experiments on a MacBook with the  

following technical specifications: Intel Core 2 Duo, 2.4 GHz, 

4 GB RAM. The well known XML datasets XMark [18] and 

TreeBank [19] were selected for the experiments.  XMark is a 

wide and shallow dataset, its size is 116MiB and its maximum 

depth is 12. TreeBank is a deep and recursive dataset, its size is 

86MiB and its maximum depth is 36.  The average relative 

error was used to measure the accuracy of our approach, it is 

defined as follows 

 

 
where Mi   is the measured value of the i−th query in the      

workload and Pi   is its predicted one. 

          Extensive testing and complex Forward XPath queries 

were used in our experiments. For example, a complex XPath 

query applied to XMark  

//item[.//payment or .//shipping]//mailbox//mail[./date] and 

to TreeBank //E MPTY [./S //N P[./∗] and .//V P]//∗/N NS. 

 

5.2 Accuracy of selectivity estimation 

technique 

      Figure 7 illustrates the accuracy of our stream-based 

selectivity estimation technique 
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Figure 7: Accuracy of selectivity estimation technique 

 

    Our technique estimates the values of NumberOfMatches, 

Cache, Buffer, OutputSize, and WorkingSpace. While the 

different existing approaches estimate only the value of 

NumberOfMatches. 

As shown in the figure, the accuracy of our technique on both 

datasets XMark and TreeBank is remarkable due to the 

complete   structure information of the path tree which 

captures recursions in the dataset, and due to the efficiency of 

our selectivity estimation algorithm which supports the 

complete Forward XPath fragment. For example, in this figure, 

the max value of average relative error is for 

NumberOfMatches on TreeBank, it is less than 10%, so it is 

like informing the end user that the number of matches for 

an XPath query Q is 10 while in reality it is between 9 and 11. 

 

5.3 Comparison with the existing 

techniques. 
 

In this section, we compare our approach with other existing  

approaches. 

 

5.3.1 Construction time for synopses 

 

 
Figure 8: Construction time for synopses 

 

      Few approaches present the time needed to construct their  

synopses, like TreeSketch and XSeed.  This is  why in 

figure 8, we compare the construction time of our synopsis 

path tree with the same time needed for TreeSketch and 

Xseed. 

     Figure 8 shows the total construction time of TreeSktech, 

XSeed and path tree synopses. We do not show the 

construction time of the Subtree sampling synopsis because it 

is not a structural one (as we already explained in section 2), 

while for XCLUSTER and   relational algebraic it is unknown. 

    The construction time of the structural synopses largely 

depends on the structure of the dataset. Our streaming 

algorithm for   building path tree outperforms considerably the 

other approaches. The construction time for each of 

TreeSktech and XSeed for TreeBank 86MiB (depth 36) took 

more than 4 days (5760 minutes), this result was confirmed in 

[12]. While for path tree, the construction time for the same 

dataset took 244 minutes.  Concerning XSeed, as the dataset 

become more complex, performance degrades dramatically [12] 

and construction time becomes significant. The construction 

time of path tree for TreeBank 86MiB (depth 36) is 24 times 

faster than XSeed (see figure 8). 

 

5.3.2 Selectivity of structural queries: accuracy 
and synopsis size 

TreeSketch and XSeed can estimate the accuracy for the    

number of matches (NumberOfMatches), while our approach 

estimates the accuracy for: NumberOfMatches, Buffer, Cache, 

and OutputSize, WorkingSpace .  The accuracy of our approach 

outperforms the accuracy of TreeSketch and XSeed due to the 

complete structure of the path tree which captures the recursions 

in the dataset, and due to the efficiency our modified LQ 

algorithm which supports the complete Forward XPath 

fragment.  The size of the path tree varies according to structure 

of the dataset. It is 10% of the size of TreeBank and 0.00006% 

of the size of XMark. 

In all cases, an efficient streaming algorithm is used to 

traverse the path tree to avoid any computational overhead.   

Note that to control the space budget (synopsis size), it is 

possible to use a very partial, hence small  path tree, to use no 

more space than competing approaches, but the accuracy of 

selectivity estimation will then be much lower. 

 

The construction time for TreeSketch took more than 4  days. 

Actually we did stop the building process of its synopsis after 

4 days.  We faced the same situation for XSeed, but the 

difference between them that XSeed synopsis (as mentioned 

before) consists of two parts, an XSeed kernel and a hyper-edge 

table (HET). The kernel was built very fast, but the HET took 

more than 4 fays, this is why we did stop the construction 

process of HET. As long as, we could not build the synopsis of 

tree TreeSketch, and due to the fact that, the accuracy of XSeed 

outperforms the one of TreeSketch [24] [12], in figure 9 we 

compare  our approach with the kernel of XSeed.  We noticed 

that XSeed does not process queries with nested predicates and 

predicates with ‘or’, ‘ not’, ‘ and’, therefore, we refine and 

simplify the queries used in this experiment. 

 

 
 

Figure 9: Accuracy of selectivity estimation techniques 

 

As showed in figure 9, the average relative error of  XSeed 

is almost 12 times higher than the same error for our approach. 
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5.3.3 Further Comparison 

The fragment of XPath: the XPath fragment covered by our     

approach is more general than the one used by XSeed and 

TreeSketch. The TreeSketch query language does not support 

queries with ‘text()’ [12] or with nested predicates.   The XSeed 

query language does not support queries with ‘text()’, queries 

with nested predicates or queries with predicate which contain  

‘and’, ‘or’, ‘not’. 

Incremental update of synopsis: minimal synopsis size 

seems desirable but won’t be the best because incremental 

maintenance would be difficult [8]. This is the case of 

TreeSketch and XSeed. While path tree preserves the same 

structure as the structure of its original XML dataset. So any 

language used to update the XML dataset can be used to update 

the path tree. Therefore, incremental update is possible, for 

example, by using the patch operations as we explained in 

section 4.1.2. 

 

6.CONCLUSION AND PERSPECTIVES 
    In this paper, we presented our stream-based selectivity  

estimation technique.  It uses the path tree synopsis and an 

efficient selectivity estimation algorithm to provide the end user 

with different estimations which allow him to  optimize his 

queries.  Extensive experiments were performed to evaluate 

our technique. We considered the accuracy of estimations, the 

types of queries and datasets that the selectivity estimation 

technique can cover, and the cost of the synopsis to be 

created.  Experiments demonstrated that our tech nique is 

accurate and outperforms the existing approaches. 

 

    As an undergoing research, we study how to compute a 

synopsis for a given XML dataset by summarizing both the 

structure and the content of the dataset 
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