
Runtime Replica Consistency Mechanism For Cloud Data Storage

Mohammed Radi
Computer science department, Faculty of applied science

Alaqsa University Gaza

Moh_radi@alaqsa.edu.ps

Abstract

A cloud computing is becoming increasingly popular; cloud

storage services attract more attentions for their high security and

availability with a low cost. Cloud storage is expected to become

the main force of the future storage market. As a key technology of

cloud computing, replication faces new challenges, especially

replica consistency. The intrinsic characteristic heterogeneous of

cloud applications makes their consistency requirements different

where the consistency requirement of certain application changes

continuously at runtime. This paper presents a Runtime Replica

Consistency Mechanism for cloud data storage to achieve a

dynamic balance between consistency and performance. Evaluation

result show that the propose mechanism guaranteeing the

consistency and decrease the overhead.

Keywords—; replica consistency; cloud storage.

1. Introduction

Cloud computing is becoming a very familiar

word in industry and is receiving a large amount

of attention from the research community.

Cloud storage is emerging as a powerful paradigm

for sharing information across the Internet, which

satisfies people’s mobile data demand anywhere

and anytime. Rather than relying on a few central

large storage arrays, such a cloud storage system

consolidates large numbers of geographically

distributed computers into a single storage pool

and provides large capacity, high performance

storage service at low costs in unreliable and

dynamic network environment [1].

Replication is one of the performance enhancing

techniques for cloud storage system that has been

widely used. Files are distributed across data

nodes to achieve availability fault tolerance,

scalability and performance. Unfortunately, the

more replication increases the problem of

inconsistent replicas. To solve the replica

consistency problem, a replica consistency

mechanism is needed. There are two traditional

approaches that can generally be used as to how

implement consistency management in large scale

systems. The first approach is lazy-copy based

protocol (pull- based) which transfers the updates

from the original resource to the replicas only

when accessing the replica. This way can save a

lot bandwidth resource because update

transferring occurs only when accessing to the

replicas but it cuts down the availability of

replicas and increase replicas access time. The

second approach is aggressive-copy based (push -

based) in which insures all replicas to be updated

immediately by transferring, the updates to all

replica once the original replica is updated. This

way can grantee the availability of up-to date data

all the time but the maintain cost increase

significantly. Lazy based and aggressive based are

only suitable for particular scenes.[2]

In the cloud computing environment the customer

of cloud storage is homogeneous. Some

application need lazy consistency and some need

aggressive consistency, and the consistency

requirement is inconsistent and change at runtime.

The mechanism for replica consistency should be

suitable for different application and consider this

consistency requirement changes at run time.

[1,3,4,5]. This paper focus on introducing a

Runtime Based Replica Consistency Mechanism

(RBRC) for cloud storage to achieve a dynamic

balance between consistency and performance.

The rest of the paper is organized as follows. In

Section 2, we present the related works. Section 3

a runtime based replica consistency mechanism.

the evaluation is presented in section 4 Finally ,

we conclude the paper in Section 5.

2. Related works

There are many consistency models proposed in

the distributed systems and database literature.

Common references in the DB literature include

[6,7,8] Also In distributed systems, [9] is the

standard textbook that describes alternative

consistency models as well as their trade-offs in

terms of consistency and availability. In data grid

environment many replica consistency models

have been proposed[2,10, 11, 12]. Our work

extends these established models by allowing

levels of consistency to be defined and adapting

the consistency guarantees at runtime.

Strong consistency is expensive not just in the

transaction cost, but also in terms of replicas’

availablity and system’s performance. Not all

applications need strong consistency guarantees.

However, eventual consistency may result in high

penalty cost caused by false operations. Therefore,

researchers pay attentions to the balance between

consistency, availablity and performance.

Ximei Wang propose an application-based

adaptive mechanism of replica consistency in

cloud data storage they divide the consistency of

applications into four categories according to their

read frequencies and update frequencies, and then

design corresponding consistency strategies. The

results show that the mechanism decreases the

amount of operations while guaranteeing the

application’s consistency requirement.[1]

Kraska proposes a strategy that system can switch

the level of consistency between serializability

and session consistency dynamically according to

running condition in the cloud[4]. It divides the

data into three categories, and treats each category

differently depending on the consistency level

provided. The consistency level will be changed

accordingly while the data’s impact changes

continuously at runtime.

Islam proposes a tree-based consistency approach

that reduces interdependency among replica

servers by introducing partially consistent and

fully consistent states of cloud databases. The tree

is formed such a way that the maximum reliable

path is ensured from the primary server to all

replica servers [5].

Ruay-Shiuang proposes an adaptive replica

consistency service for data grid[10]. The strategy

treats replicas differently according to the access

frequency during the initializing process. The

original replica and first level replicas can be

updated immediately. If access frequency exceeds

a predefined threshold, the second level replicas

are updated immediately, too. If not, the replica is

only updated when it is accessed.

Dongmei Cao proposes an adaptive consistency

model for grid according to access frequency[13].

Compared to [10], the most important

improvement is allowing system to switch

consistency level automatically at runtime.

Based on asynchronous aggressive update

propagation technique, Radi, M propose a scalable

replica consistency protocol to maintain replica

consistency in data grid. In the propose protocol

the high access weight replicas updated faster than

the others.[12]

Ghalem compares pessimistic consistency with

optimistic consistency, and combines these two

existing approaches [2]. It divides replicas into

several sites. Optimistic principals are used to

ensure replica consistency within each site.

Whereas, global consistency is covered by the

application of algorithms inspired from the

pessimistic approach. Some of the above

researches don’t allow the system to change

consistency level automatically at runtime, so they

can’t achieve the dynamic balance between

consistency, availability and performance. Some

partition the consistency level continuously, so the

switch transaction cost is high. And in some

works, the metric is selected unilaterally, so it

can’t be the very representative for an application.

In order to avoid the above problems, the adaptive

consistency mechanism proposed in this paper is

based on read frequency and update frequency.

System can select a suitable strategy dynamically

according to these two metrics at runtime.

3. Runtime consistency mechanism in cloud

3.1 Model structure

In this paper the management of replica adapts a

single master nodes for each data item or file in

which there exist single master copy which is the

origin of the file and the other replicas are

secondary replicas. Figure 1 show the overview of

the system architecture.

We assume the SS, LS and SN are three main

nodes of cloud sites that have more systems and

storage resources. The super server (SS), where

the original data are stored, can be modified by

Group

A

Group

B
Group

S

Group

D

L

S
L

S

L

S
L

S

S

N

S

N
S

N

S

N
S

N

S

N
S

N
S

N
S

N

S

N

S

N
S

N

S

S

Figure 1: Over view of the system

architecture

end users through data intensive applications.

Several replica nodes located closely are

organized into one group. Each group has one

server consider as Local Server (LS) and other

nodes in the group is consider as a Secondary

Node (SN). LS is responsible for the consistency

service within its group. A LS is responsible for

executes a corresponding operation according to

the replica consistency mechanism. The SN’s are

the replica holders, one of the secondary node in

each group will act as a LS node when the

previous one breaks down.

In our model both LS and SN can receive a read

request from end user and only A SS can be

modified by end users and if a LS or SN receive

update request it forward it to the SS to process it.

3.2 Replica consistency architecture

In order to provide the required functionalities of

the single master replication, Replica Consistency

Service (RCS) architecture is proposed. Local

Replica Consistency Service (LRCS) and Replica

Consistency Catalogue (RCC) are the main

components of the architecture:

 Local Replica Consistency Service (LRCS): it

is responsible for updating its local replica and

relay the update propagation process if

necessary.

 Replica Consistency Catalogue (RCC) is used

to store the metadata inclides information of

all SN including the physical poison, update

and read frequencies.; this metadata will used

by the RCS.
The interactions between the above components are

shown in Figure 2.



This interaction can be explained through a simple

case user wishing to update a master file Fi. In a

basic scenario, a user passes the update request

and the target file to SS. The LRCS updates the

local replica, and reflect a consistent view to its

user, run the first step of the run time algorithm in

which SS LRCS inquires the RCC about the

replica LSs . After that SS send the update

information to all LS. If the local server receives

the update request it only passes this update

request to the SS.details of the first step is shown

in figure 3.

When the LS receive the update information, first

it applies it at local replica and reflects the updates

to its users, then it runs the second step of

Runtime algorithm as show in figure 4. In the

second step each local server inquires the RC

about the read frequency of each replica in its

group. Then it divides the replicas into two sup

group depending on the read frequency. The

replicas with high read frequency will be updated

aggressively and the replicas with low frequency

will be updated in lazy.

If the SS or the LS receive any read request from

the user it directly allow the user to access the file,

but if a SN receive a read request it first will

check its read frequency, if the read frequency is

high it directly allow the user to access the file but

if the read frequency is low, then the LRCS pull

the LRCS at LC for the last update, and it allow

the user to access the replica only after it apply all

the missing updates locally as shown in figure 5.

Figure 2: Replica Consistency Service

Architecture

Figure 3: first step of the consistency algorithm

Figure 4: second step of the consistency algorithm

The runtime consistency mechanism divides the

nodes into two categories according to the read

frequency. The secondary nodes with high read

frequency will follow the aggressive copy, and

the low read frequency will follow the lazy- copy,

while all master nodes will be updates in

aggressive- copy. The ready frequency is

classified as high if it exceeds a threshold value,

and it classify as low if its less that a threshold

value. Threshold value can be determined by

cloud administrator.

4. Evaluation

We have implemented a runtime based replica

consistency mechanism using OptorSim [14], a

simulator for Data Grids. OptorSim was

developed by the European Data Grid (EDG)

project. It provides users with the Data Grids

simulated architecture and programming

interfaces to evaluate and validate their replication

strategies. There are several critical omponents

designed and implemented in OptorSim, including

computing element (CE), storage element (SE),

resource broker (RB), replica manager (RM), and

replica optimister (RO), and so on. CEs and SEs

are used to execute grid jobs and store files

respectively.

In order to study the consistency we modify

Optersim to satisfy our demand, and then compile

our consistency mechanism on it. Each group is

connected through the Internet. The Intra-region

and inter-region network bandwidth are

1000Mb/sec and 500Mb/sec respectively.

Parameter Value

Number of Jobs 500

Job Delay (ms) 25000

Max CE Queue size 200

File Processing Time

(ms)

100000

Number of experiments 100

Each File Size (GBytes) 10

Number of Replica

Modifications

100

Access Threshold 30

In order to study the runtime replica consistency

mechanism we choose to compare our mechanism

with lazy-copy based protocol aggressive-copy

based in term of average file access time , number

of replication, percentage of requesting up-to-date

date . File access time is defined as the real time

duration that a CE spends for accessing one file

including file replication time and file processing

time. The number of replication is the number of

replications needed to run the replica consistency

mechanism. The higher number of replications

means the more file transmissions may be taken

place. It may consume a considerable amount of

network bandwidth. percentage of requesting up-

to-date date is defined percentage that the

application accesses up-to-date data in time

interval τ to be the representative of consistency

requirement of an application, and the overall

update amount to be the representative of

transaction cost.

Recall that in the mechanism with higher number

of replications file transmissions may be taken

place. Also It may consume a considerable

amount of network bandwidth. Figure 7 represents

the number of replications for the three

consistency mechanisms. For lazy protocol the

number of replication is very small and the

aggressive-copy based protocol the number of

replication is very high and it may waste too much

network resources on invalid replications because

some replicas may never be accessed. Compared

with Aggressive-copy based protocol, our

mechanism could lower the number of replications

without wasting valuable network bandwidth. And

it take not so much number of replication than

lazy- copy mechanism.

Figure 6. Basic architecture of OptorSim

Figure 5: first step of the consistency algorithm

Figure 8 shows the comparison of the percentage

that read a latest data every interval τ between

lazy-copy, aggressive–copy and our consistency

mechanism. Aggressive-copy almost guarantees

that every access read the latest data. Lazy-copy

mechanism guarantees weaker consistency, so the

percentage is lower than strong consistency

obviously. The run-time mechanism give a

percentage in between the lazy-copy and

aggressive –copy.

.

The average file access time have evaluated as

shown in Figure 9. Compared with the Lazy-copy

based protocol, run-time can reduce file access

delay time significantly because of our shorter

replication time. As for Aggressive-copy based

protocol, it copies the up-to-date replica in its

region all along, therefore the file access delay

time is equal to the file processing time without

suffering form the long replication delay time due

to the consistency problems.

Compared to aggressive copy mechanism, the
run-time consistency mechanism proposed
decreases number of replication significantly
while the needs of application for consistency
are mainly satisfied. And our consistency

mechanism guarantees higher percentage of

read a latest data than lazy-copy and decrease
the average file access time. Consequently, we
get a better balance between consistency and
performance.

5. Conclusion

This paper presents a Runtime Replica
Consistency Mechanism for cloud data storage
aiming achieve a dynamic balance between
consistency and performance. The runtime
consistency mechanism divides the nodes into
two categories according to the read frequency.
The mechanism maintain the replica
consistency of some nodes in an aggressive
way and some other node in a lazy way
according to the read frequency. Evaluation
result show that the propose mechanism
guaranteeing the consistency and decrease the
overhead

References
[1] Qingsong Wei, Bharadwaj Veeravalli, Bozhao

Gong,Lingfang Zeng, Dan Feng, CDRM: A Cost-effective

Dynamic Replication Management Scheme for Cloud

Storage Cluster. 2010 IEEE International Conference on

Cluster Computing, 188 – 196.

[2] Ghalem, B, S. Yahya. A Hybrid Approach for

Consistency Management in Large Scale Systems.

Proceedings of the International conference on Networking

and Services, Page(s): 71

[3]Ximei Wang, Shoubao Yang, Shuling Wang, et, al, An

Application-Based Adaptive Replica Consistency for Cloud

Storage. 2010 Ninth International Conference on Grid and

Cloud Computing.

[4]Kraska, T, M. Hentschel, et al. Consistency Rationing in

the Cloud: Pay only when it matters. Proceedings of the

VLDB Endowment, 2009, 2(1): 253-264.

[5]Islam, M.A.; Vrbsky, S.V.Tree-Based Consistency

Approach for Cloud Databases Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second

International Conference on Nov. 30 2010-Dec. 3 2010, 401

- 404

0

500

1000

1500

2000

2500

3000

3500

Run-Time Aggressive-
copy

Lazy-copy

N
u

m
b

e
r

o
f

R
e

p
lic

at
io

n

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 3 5 7 9 11 13

p
e

rc
e

n
ta

g
e

Time/τ

Run-Time

Aggressive-copy

Lazy-copy

0

20

40

60

80

100

120

140

Lazy Aggressive Run-time

Figure 7: Number of replication

Figure 9: .Average file access time

Figure 8: Percentage of accessing the up-to-date

data

[6] P. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database Systems.

Addison Wesley, 1987

[7] M. T. Ozsu and P. Valduriez. Principles of Distributed

Database Systems. Prentice Hall, 1999.

[8] G. Weikum and G. Vossen. Transactional Information

Systems.

[9] A. Tanenbaum and M. van Steen. Distributed Systems:

Principles and Paradigms. Prentice Hall, 2002.

[10] Ruay-Shiung Chang, Jih-Sheng Chang. Adaptable

Replica Consistency Service for Data Grid. Third

International Conference on Information Technology: New

Generations (ITNG’06). 2006.

[11] Cao DongMei. The Research of Replica selection and

consistency for Grid[D]. WuHan: Huazhong University of

Science and Technology,

2007.

[12] Mohammed Radi ; Ali Mamat ; M. Mat Deris ;

Hamidah Ibrahim ; Subramaniam Shamala, Access Weight

Replica Consistency Protocol For Large Scale Data Grid,

Journal of Computer ScienceYear: 2008 Volume: 4 - Issue:

2

[13] Cao DongMei. The Research of Replica selection and

consistency for Grid[D]. WuHan: Huazhong University of

Science and Technology, 2007.

[14] OptorSim: A Replica Optimiser Simulation.

http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.

html.

http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim

