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Abstract People have unique ways of learning, which may greatly affect the learning process and,

therefore, its outcome. In order to be effective, e-learning systems should be capable of

adapting the content of courses to the individual characteristics of students. In this regard,

some educational systems have proposed the use of questionnaires for determining a student

learning style; and then adapting their behaviour according to the students’ styles. However,

the use of questionnaires is shown to be not only a time-consuming investment but also an

unreliable method for acquiring learning style characterisations. In this paper, we present an

approach to recognize automatically the learning styles of individual students according to

the actions that he or she has performed in an e-learning environment. This recognition

technique is based upon feed-forward neural networks.
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Introduction

Students learn in different ways. Some students prefer

graphics, such as diagrams and blueprints, while oth-

ers prefer written material. Some students feel more

comfortable with facts, data and experimentation,

whereas others prefer principles and theories (Felder

& Silvermann 1988). E-learning environments can

take advantage of these different forms of learning by

recognizing the style of each individual student using

the system and adapting the content of courses to

match this style.

There are a few systems that are actually capable of

adapting courses’ contents according to students’

learning styles (Carver et al. 1999; Gilbert & Han

1999; Paredes & Rodriguez 2002; Stash & Brau

2004). In these systems, the learning materials are then

presented in the way that best fit the learning style of

each student, which is usually assessed through a

predefined questionnaire. However, answering long

questionnaires is a time-consuming task that students

are not always willing to carry out and, consequently,

results become unreliable (Stash et al. 2004).

This paper describes an approach to the problem of

mapping students&apso; actions within e-learning

environments into learning styles. The method is

based on artificial neural networks (ANNs). Neural

networks are computational models for classification

inspired by the neural structure of the brain: models

that have proven to produce very accurate classifiers.

In the proposed approach, feed-forward neural net-

works are used to recognize students’ learning styles

based upon the actions they have performed in an

e-learning system.

The rest of this paper is organized as follows: The

next section briefly describes learning style theory.

This is followed by an overview of ANNs and the

back-propagation algorithms. The sections after that
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show how we have modelled the recognition of

learning styles using neural networks and empirical

results obtained in the recognition of learning styles.

The penultimate section discusses related work and

the last section presents our conclusions.

Learning styles

Keefe (1979) defines learning styles as characteristic

cognitive, affective and psychological behaviours that

serve as relatively stable indicators of how learners

perceive, interact with and respond to learning en-

vironments. In the last decade, several learning styles

models have been proposed (Kolb 1984; Myers &

McCaulley 1985; Felder & Silvermann 1988; Lawr-

ence 1993; Litzinger & Osif 1993). A critical review

of learning styles, analysing their reliability, validity

and implication for pedagogy, can be found in (Cof-

field et al. 2004a;b). The authors of this review con-

cluded that in the field of learning styles, there is a lack

of theoretical coherence and a common framework

(Coffield et al. 2004b, p. 145).

In spite of this fact, experimental research on the

application of learning styles in computer-based edu-

cation provides support for the view that learning can

be enhanced through the presentation of materials that

are consistent with a student’s particular learning style

(Budhu 2002; Peña et al. 2002; Stash et al. 2004). For

example, it has been shown that the performance of

students in a simple Web-based learning environment

correlates with their self-reported learning preference

(Walters et al. 2000).

In this paper, we have adopted the model suggested

by Felder and Silverman (1988) for engineering edu-

cation, which classifies students according to their

position in several scales that evaluate how they per-

ceive and process information.

This model classifies students according to four

dimensions:

� Perception: What type of information does the

student preferentially perceive: sensory (ex-

ternal)——sights, sounds, physical sensations, or

intuitive (internal)——possibilities, insights, hun-

ches?

� Sensory learners: these students like facts, data

and experimentation. They perceive concrete,

practical, and are oriented towards facts and

procedural information. When solving problems,

sensory students are routinely very patient with

details and usually dislike surprises. Because of

these characteristics, they show a slower reaction

to problems, but they typically present a better

outcome.

� Intuitive learners: intuitive learners prefer the-

ories and principles. They rapidly become bored

with details and mechanical problem solving.

Innovation is what attracts intuitive learners’ at-

tention. They generally solve problems quickly,

not paying much attention to details. This makes

them fast but prone to errors and, then, they

often get lower qualifications than sensitive

learners.

� Input: Through which sensory channel is external

information most effectively perceived: visual——

pictures, diagrams, graphs, demonstrations or ver-

bal——written or spoken sounds?

� Visual learners: they remember, understand and

assimilate information better if it is presented to

them in a visual way. They tend to remember

graphics, pictures, diagrams, time lines, blue-

prints, presentations and any other visual material.

� Verbal learners: cognitive scientists have estab-

lished that our brains generally convert written

works into their spoken equivalents and process

them in the same way that they process spoken

words (Felder & Brent 2005). Hence, verbal

learners are not only those who prefer auditory

material but also those who remember well what

they hear and what they read.

� Processing: How does the student prefer to process

information: actively——through engagement in

physical activities or discussions, or reflectively——

through introspection?

� Active learners: they feel more comfortable with

active experimentation than with reflexive ob-

servation. An active person learns by trying

things out and working with others. They like

doing something in the external world with the

received information. Active learners work well

in groups and in situations that require their

participation.
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� Reflective learners: reflective learners prefer in-

trospective examination and manipulation of in-

formation. They learn by thinking things through

and working alone or with another person.

� Understanding: How does the student progress

towards understanding: sequentially——in con-

tinual steps, or globally——in large jumps, holi-

stically?

� Sequential learners: sequential learners follow a

line of reasoning when progressing towards the

solution of a problem; they like things to be lin-

ear. They learn better if information is presented

in a steady progression of complexity and diffi-

culty (i.e. they learn in small incremental steps).

� Global learners: global learners make intuitive

leaps and may be unable to explain how they

come up with solutions. They are holistic, system

thinkers; they learn in large leaps. They need to

understand the whole before understanding the

parts that compose it; they need to get the ‘big

picture’.

If the dimensions were absolute, these four dimensions

of learning allow to obtain 16 different learning styles

(i.e. in the perception dimension, a student would

either be sensitive or intuitive). However, each

dimension can be rated on a scale, for example the

scale used in the Index of Learning Styles (ILS)1 is a

scale of 22 degree. Having this scale, the number of

different styles is 234256 (224).

In the following section, we detail how ANNs can be

used to recognize the learning styles of students based

on the actions they perform in an e-learning system.

ANNs

The human brain is composed of cells (neurons) that

are the only cells capable of communicating with each

other. This is one of the capabilities that allows humans

to exhibit intelligent behaviour. ANNs are computa-

tional models based on the biological neural structure

of the brain, as first proposed by McCulloch and Pitts

(1943). This computational model, also known as

connectionism, aims to mathematically represent and

reproduce the way a human nervous system works.

The neuron is the basic processing unit. Each neu-

ron receives signals from others neurons, processes

these signals and transmits an output to its neighbours.

Some of the signals it receives excite it while others

inhibit it. Usually, an exciting signal is represented as

a positive real value, while a negative value is as-

signed to an inhibiting signal. As shown in Fig 1, the

Net input of a neuron is the sum of values that arrive at

its input. This value represents the excitation level of

the neuron. If it exceeds a certain threshold, the neuron

fires an output signal to its neighbours. From this in-

put–process–output model, neurons are classified with

respect to where the signals come from. If the signals

that the neuron receives come from the environment, it

is called an input neuron. If it receives the input from

other neurons and transmits its outcome to others as

well, it is called a hidden neuron. Finally, if it sends its

output to the environment, then it is called an output

neuron. Usually, neurons sharing similar character-

istics are grouped together, forming layers of neurons.

What distinguishes one layer of neurons from another

are their inputs and outputs. So, neurons belonging to

layer i receive their input from layer i-1, and they send

their output to layer i11. Three kinds of layers are

distinguished in ANN literature. If the layer contains

input neurons, it is an input layer; if it contains hidden

neurons, it is a hidden layer; and if it contains output

neurons then it is an output layer.

An ANN is termed feed-forward, if neurons be-

longing to layer i receive input only from layer i-1, and

only send output to layer i11. This means that in feed-

forward neural networks, there are neither connection

between neurons from the same layer (lateral con-

nections) nor from previous layers (recurrent con-

nections). Information in this class of networks only

flows forward, from the input to the output passing

through hidden layers.

F(aj(t),Netj)
Fj(aj(t+1))

aj(t+1)
= =Netj yj

yj

Unit Uj

W1
W2

Wn

X2

X1

Xn

.

.

.

Fig 1 Main components of an artificial neuron.

1Available online at http://www.ncsu.edu/felderpublic.ILSpage.html
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Structure and operation of ANNs

The fundamental unit of processing in ANNs is the

Artificial Neuron (AN); see Fig 1. ANs are mathe-

matical models that represent the general character-

istics of biological neurons. Let us see how these

biological features are mathematically modeled and

how they contribute to the learning process of ANNs.

When a signal is transmitted from processing unit i

to processing unit j, the signal xi is modified by the

synaptic weight (wij) associated with this communica-

tion channel. The modulated signals that arrive at unit

j are added to form the net input Netj as is shown in

Netj ¼
X

i

xiwij; ð1Þ

Each neuron is characterized in any instant of time t

by a real value, called activation state or activation

level, aj tð Þ Also, there is a function F, called activa-

tion function, which determines the next activation

state based on the current activation state and the Netj

input of the neuron.

F aj tð Þ;Netj
� �

¼ aj t þ 1ð Þ: ð2Þ

Associated with each unit there exists an output

function, fj, that transforms the current activation level

into an output signal yi. This signal is sent through a

unidirectional communication channel to other units in

the network

fj aj t þ 1ð Þ
� �

¼ yj ð3Þ

Learning algorithm

A learning algorithm is the process by which an ANN

generates internal changes so that it can adapt its be-

haviour in response to the environment. The mod-

ifications that by the network during this process

enable it to gain better performance, so it can over-

come its output to the environment. When there is an

external agent involved in the learning process, it

receives the name of supervised learning. Back-

propagation is a supervised learning algorithm, used

in feed-forward neural networks, which reduce the

global error produced by the network over the weight

space.

Back-propagation (Parker 1982; Werbos 1988) is a

generalization of the LMS algorithm (Rosenblatt

1958; Widrow & Hoff 1960) applied to feed-forward

multi-layer perceptron networks. This network is one

of the most spread models in the connectionism field,

due to its learning capability to associate an input

space to an output. It has been demonstrated by dif-

ferent authors that a multi-layer perceptron is a uni-

versal function approximation mechanism, in the

sense that any continuous function over a compact Rn

can be approximated by a multi-layer perceptron

(Cybenko 1989; Hornik et al. 1989).

BPN nets operate in two steps. In the first step,

called training process, the network is initialized with

random small values in its weights. The goal of this

process is to find a set of weight values that minimize

the global error of the network, given in equation (5).

The second step is called generalization. In this step,

the network has already learned an internal re-

presentation of the previously presented patterns and

becomes able to classify novel patterns presented as

inputs.

The learning process of a BPN is briefly described

as follows: a pattern is a two-tuple Pi ¼ Xi; Tih i where

Xi is a set of values that will be presented as input to

the network and Ti is a set of values that represent the

desired target for the values presented at the input

layer. For the network to learn a pattern, Pi, the values

of the pattern have to be presented at the input layer

first. These values are taken as stimulus and are pro-

pagated forward until the output layer is reached. In

the output, a set (O) of values obtained by the network

(called oj) are compared with the set of desired values

(Ti) to obtain the pattern error according to

Erri ¼
XM
j¼1

oj � tj
� �2

; ð4Þ

where M is the number of neurons in the output layer,

oi 2 O and tj 2 T . Hence, the global error of the net-

work is calculated considering all patterns as follows:

Err ¼ 1

2P

XP

k¼1

XM
j¼1

o
kð Þ

j � t
kð Þ

j

� �2

; ð5Þ

where P is the number of patterns in the training set.

This error is the one that the training procedure tries to

minimize. These error values are back propagated

through the network to adjust the values of its con-

nection weights so that the change in values is pro-

portional to the gradient descent of the error in

equation (6). This weight adjustment rule is known as

the generalized delta rule (GDR) (Rumelhart et al.
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1986;1988) and is a generalization of the Widrow–

Hoff delta rule (Widrow & Hoff 1960)

DWij ¼
@Err

@Wij

¼ @

@Wij

1

2

XM
k¼1

ok � tkð Þ2

¼
XM
k¼1

ok � tkð Þ @ok

@Wij

:

ð6Þ

This equation can also be rewritten as equation (7),

with addition of the momentum (Rumelhart et al.

1986) term to achieve faster convergence. The momen-

tum part of the equation, b W t � 1ð Þ �W t � 2ð Þð Þ,
allows a network to respond not only to the local

gradient but also to recent trends in the error

surface.

W tð Þ ¼ W t � 1ð Þ � adjyj

þ b W t � 1ð Þ �W t � 2ð Þð Þ; ð7Þ

where dj is calculated according to the rule by

dj ¼
f 0ðzjÞðoj � tjÞ ðoutput : layerÞ
f 0ðzjÞ

P
i

Wijdj ðhidden : layerÞ

(
ð8Þ

This process of weight adjustment is repeated until

a desired error threshold is reached.

Modelling learning styles with feed-forward

neural networks

The neural network architecture that we propose in

this paper aims to find a mapping between students’

actions in the system and the learning style that they

best fit. To achieve this goal, we must identify the

inputs of the network, its outputs and the meaning of

their possible values. It is also necessary to determine

other architectural parameters, such as the number of

hidden layers to be used, the number of processing

units in each of the hidden layers, the activation

function to be used in the processing units and the

learning coefficient of the network. Each of these is-

sues is analysed in the following subsections.

Input layer

To represent the input of the network, we propose the

use of one processing unit (neuron) in the input layer

per observed action in the system. These actions are as

follows:

� Reading material: academic units can be presented

using both abstract (theories) and concrete material

(exercises). What kind of material is the student

most interested in?

� Access to examples: in each academic unit, a

number of examples are presented to students. In

relation to the total number of available examples,

how many of them has the student accessed to?

� Answer changes: Does the student change the an-

swers of the exam before he hands it over? If yes,

what is the percentage of answers he has changed?

� Exercises: a number of exercises are also included

in academic units. In relation to the total number of

available exercises, how many exercises has the

student accessed to?

� Exam delivery time: each exam has an associated

time –to solve. What is the relation between the

student’s exam delivery time and the units’ time –to

solve?

� Exam revision: in relation to the time to solve of the

exam, what was the percentage of time spent by the

student checking the correctness of the exam?

� Chat usage: the student may ignore the chat, read

other students’ messages or read/write messages

with others.

� Forum usage: the student may ignore the forum,

read other students posted messages or post mes-

sages in the forum.

� Mail usage: the student may use (or not) the e-mail.

� Information access: information in academic units

is presented following a line of reasoning. How has

the student followed that line of reasoning? Line-

ally, or has he or she visited a random sequence of

items?

These values have to be encoded in the real interval

[� 5; 15] as expected by the neurons in the input layer

of the network. This interval was intentionally selected

to match the expected domain of the activation func-

tion selected for the units of the net as shown in sub-

section ‘Network architecture and parameters’. Table 1

summarizes the input vector, X, representation.

Output layer

The output of the network should approximate the

learning style of the students based on the actions
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presented at the input layer. In this case, we propose

the use of one processing neuron in this layer per

learning style dimension used in the model. In this

work, only three of the four dimensions of the Felder–

Silverman model have been used to model students’

learning style. These dimensions are as follows:

� Perception: this dimension determines whether the

style of the student is intuitive or sensitive.

� Processing: this dimension decides whether a stu-

dent’s leaning style better fits active or reflective.

� Understanding: this dimension informs whether the

student learning style is sequential or global.

Table 2 summarizes the output vector representation.

Hidden layer

In a multi-layer perceptron using continuous nonlinear

hidden-layer activation functions, as proposed in this

work, one hidden layer with an arbitrarily large

number of units suffices for the ‘universal approx-

imation property’ (Hornik et al. 1989; Bishop 1995).

However, there is still no theory about how many

hidden units are needed to approximate any given

function.

Although there are some empirical rules, such as the

Baum–Haussler rule (Baum & Haussler 1988), for

determining the desirable number of neurons in the

hidden layer of a multi-layer feed-forward neural

network, we determined this architectural parameter

via trial-and-error experimentation. A total of 24 units

have been empirically found as appropriate for the

task at hand, considering that this layer has to have

enough processing units to represent the nonlinear

aspects of the model and not too many for making the

training process very complex.

Network architecture and parameters

The network is trained using the GDR (Rumelhart

et al. 1986;1988), a generalization of the Widrow–

Hoff delta rule (Widrow & Hoff 1960). The activation

function used in the network units is the hyperbolic

tangent function shown in

f zð Þ ¼ ez � e�z

ez þ e�z
: ð9Þ

Many interesting properties of this function make it

suitable to represent the activation function of the

network. On the one hand, the function domain can be

restricted to [� 5; 15] where the function reaches

more than 99.99% of its range; the different observed

aspects are then projected to this range. Another in-

teresting property is that its derivate can be defined in

terms of the function’s output; this makes calculation

easier as is shown in equation (10). A further im-

portant property of the hyperbolic tangent function is

that its range is [� 1; 11]; this property can be uti-

lized to represent the different ranges of the learning

style dimensions.

d

dx
tanh xð Þ ¼ d

dx

ex � e�x

ex þ e�x

¼ d

dx

sinh xð Þ
cosh xð Þ

¼ cosh2 xð Þ � sinh2 xð Þ
cosh2 xð Þ

¼ 1� tanh2 xð Þ

: ð10Þ

This architecture parameter, along with the proper

selection of learning rates and momentum coefficients,

defines the specific values selected for this work. The

learning rate, a, was set to a small value between 0.1

and 0.25 so that the representation acquired can be a

faithful one.

Table 1. Input representation.

X Action � 5 15

x0 Reading material Abstract Concrete

x1 Access to examples Few Much

x2 Answer changes Few Much

x3 Exercises Few Much

x4 Exam delivery time Quick Slow

x5 Exam revision Few Much

x6 Chat usage Don’t use Read and write

x7 Forum usage Don’t use Read and post

x8 Mail usage Don’t use Use

x9 Information access Lineal Global

Table 2. Output representation.

O Dimension � 1 11

o0 Perception Intuitive Sensitive

o1 Processing Active Reflective

o2 Understanding Sequential Global
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To sum up, the proposed architecture for learning

style recognition is a three-layered feed-forward

neural network with Batch Gradient Descent with the

Momentum learning algorithm. In this architecture,

the first layer contains a total of 10 input neurons; the

hidden layer contains 24 processing units that are

connected to 3 output units in the third layer. In-

formation about the network architecture and other

parameters is summarized in Table 3.

Temporal adaptation

To ensure that the student’s learning style does not

oscillate between different states (and keeps the sys-

tem changing the contents of the student’s courses as a

consequence), historical interaction data can be sup-

plied to the classifier to enhance the prediction of the

learning style. To accomplish this goal, a parameter N

is defined to represent the length of the input sequence

to the network, causing the input to the classifier to be

a function of the historical data. That is, the input to

the system is a finite sequence X where

X ¼ xt; xt�1; . . . ; xt�N : ð11Þ

This sequence of inputs is pre-processed applying

the discount return transformation (Sutton 1988) be-

fore becoming the real input to the network. Equation

(12) shows how the actual input to the ANN will be

produced from the data measured at time t and from

historical information

xt ¼
XN

k¼1

gk�1xtþk 0 � g � 1: ð12Þ

Another important network parameter is the dis-

count factor, g, which determines the importance gi-

ven to past experience. Along with the length of the

sequence, the discount factor allows to control the

relevance of past experience in the system to the re-

cognition of the learning style.

Experimental results

Estimating the accuracy of classifiers induced by su-

pervised learning algorithms (i.e. classifier’s prob-

ability of correctly recognizing a randomly selected

instance) is important not only to predict its future

prediction accuracy but also for choosing a classifier

from a given set (model selection) or combining

classifiers (Wolpert 1992). In order to evaluate the

proposed approach, we generated an artificial data-

set for experimentation by simulating the actions of

students.

For this task, we considered that each student has a

particular learning style denoted by a set of preferred

actions and behaves according to it. The resulting

dataset built for testing the network consisted of

100 pairs of input–output values. Each of these pairs

contained possible actions that students might perform

in the system associated with their corresponding

learning style dimensions.

To determine the best number of processing units in

the hidden layer, we trained the network varying this

parameter and estimated the architecture accuracy

using k-fold cross-validation with k 5 10. Each of the

10 folds was composed of a set of 90 training patterns

and 10 test patterns. To measure the accuracy of each

classifier, we calculated the global error (equation (5))

that it produces when it is stimulated with the test

cases. Each of the output dimensions was considered

independently in the calculation.

Figure 2 shows the mean accuracy of cross-valida-

tion when varying the number of neurons in the net-

work-hidden layer. We can observe in the figure that

the best accuracy (69.3%) is reached when the number

of hidden units is 24. Figure 3 shows the variance of

the classifier when the number of neuron varies. In this

figure, the lowest variance (1.53%) is obtained when

the number of neurons is 22. Based on these results, we

have chosen 24 neurons for achieving the maximum

accuracy. For this value, the variance (1.70%) of the

classifier is not the minimum but it is still acceptable.

Related work

Most adaptive educational systems providing in-

dividualized courses according to learning styles, such

Table 3. Proposed Architectural Parameters.

Parameter Value

Number of input neurons 10

Number of hidden neurons 24

Number of output neurons 3

Activation function Hyperbolic tangent

Learning rate 0.02

Momentum 0.5
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as ARTHUR (Gilbert & Han 1999), CS388 (Carver

et al. 1999), MAS-PLANG (Peña et al. 2002) and

TangoW (Paredes & Rodriguez 2002), assess stu-

dents’ learning styles by having them complete ques-

tionnaires. Each question of these questionnaires

requires that the student selects one of several possible

answers. The main disadvantage of this approach is

that the questionnaires tend to be time consuming and

students might try to answer questions arbitrarily. This

has a negative effect on the accuracy of the results

obtained. A further disadvantage is that learning styles

can change over time, so the knowledge gathered by

the questionnaire can become obsolete.

Conversely, the proposed approach consists in

training a neural network to determine learning styles

automatically based on the students’ actions. In this

approach, the network is trained based on a number of

the most recent actions performed by students and,

thus, it allows the system to deal with changes in the

students’ learning styles. The closest related work is

AHA! (Stash & Brau 2004), an educational system

that infers the students’ learning style from the ob-

servation of their browsing behaviour. In contrast to

the mentioned systems, it does not make use of

questionnaires. However, this system covers a small

number of learning styles, those corresponding to

field-dependent/independent styles and to visual/ver-

bal styles, whereas the approach presented in this pa-

per is based on the Felder and Silverman theory for

engineering education.

Learning styles in engineering education have been

studied by (Al-Holou & Clum 1999; Ayre & Nafalski

2000; Budhu 2002; Kuri & Truzzi 2002). Kuri and

Truzzi (2002) use the Felder–Silverman model to as-

sess the distribution of responses of freshmen en-

gineering students using the ILS questionnaire, and

they concluded that the use of learning styles to ac-

commodate their teaching strategies to students has

been shown to be effective in encouraging students.

Other e-learning environments that are not exclusively

from engineering education have incorporated the

Felder–Silverman model of learning styles (Peña et al.

2002; Kim & Moore 2005). They also rely on re-

sponses obtained from ILS questionnaires fulfilled at

the beginning of the courses, and they adapt the con-

tent of the courses to the characteristics of instruc-

tional and learning strategies.

Conclusions

In this paper, we have described an approach based on

feed-forward neural networks to infer the learning

styles of students automatically. We have selected the

back-propagation algorithm to train the ANN de-

scribed in this work. In addition, we have described a

neural network architecture that learns the associations

between students’ actions in e-learning environments

and their corresponding Felder–Silvermans learning

style of engineering education.

The advantage of this approach is twofold. First, an

automatic mechanism for style recognition facilitates

the gathering of information about learning pre-

ferences, making it imperceptible to students. Second,

the proposed algorithm uses the recent history of
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system usage so that systems using this approach can

recognize changes in learning styles or some of their

dimensions over time.

The recognition mechanism presented in this paper

can be introduced in adaptive e-learning environments

to help in the detection of students’ learning styles

and, thus, conveniently adapt the contents of academic

courses that are presented to them. It can also be ex-

tended to consider further input actions available in

particular e-learning systems or domains.
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