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Abstract—Many algorithms in machine learning rely on being given a good distance metric over the input space. Rather than using a

default metric such as the Euclidean metric, it is desirable to obtain a metric based on the provided data. We consider the problem of

learning a Riemannian metric associated with a given differentiable manifold and a set of points. Our approach to the problem involves

choosing a metric from a parametric family that is based on maximizing the inverse volume of a given data set of points. From a statistical

perspective, it is related to maximum likelihood under a model that assigns probabilities inversely proportional to the Riemannian volume

element. We discuss in detail learning a metric on the multinomial simplex where the metric candidates are pull-back metrics of the Fisher

information under a Lie group of transformations. When applied to text document classification the resulting geodesic distance resemble,

but outperform, the tfidf cosine similarity measure.

Index Terms—Distance learning, text analysis, machine learning.
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1 INTRODUCTION

MACHINE learning algorithms often require an embed-
ding of data points into some space. Algorithms such as

k-nearest neighbors and neural networks assume the embed-
ding space to be IRn, while SVM and other kernel methods
embed the data in a Hilbert space through a kernel operation.
Whatever the embedding space is, the notion of metric
structure has to be carefully considered. For high-dimen-
sional structured data such as text documents or images, it is
hard to devise an appropriate metric by hand. This has led, in
many cases, to the use of default metrics such as the pixel-
wise Euclidean distance in images and the cosine similarity
term frequency distance in text documents. These assump-
tions of default metrics is often used without justification by
data or modeling arguments. We argue that, in the absence of
direct evidence of Euclidean geometry, the metric structure
should be inferred from the available data. The obtained
metric may be useful in learning tasks such as classification
and clustering through algorithms such as nearest neighbor
and k-means. The learned metric d may also be useful for
statistical modeling of the data through custom probability
distribution such as pðxÞ ¼ Z�1 expð�d2ðx; �Þ=2�2Þ.

Several attempts have recently been made to learn the
metric structure of the embedding space from a given data
set. Saul and Jordan [12] use geometrical arguments to learn
optimal paths connecting two points in a space. Xing et al.
[13] learn a global metric structure that is able to capture
non-Euclidean geometry. The learned metric is global and
not local as the resulting distances are invariant to
translation of the data points. While an invariant metric
may be desirable, in some cases, it is often not natural for
compact or bounded manifolds. Lanckriet et al. [6] learn a
kernel matrix that represents similarities between all pairs
of the supplied data points. While such an approach does

learn the kernel structure from data, the resulting Gram
matrix does not generalize to unseen points.

Learning a Riemannian metric is also related to finding a
lower dimensional representation of a data set. Work in this
area includes linear methods such as principal component
analysis and nonlinear methods such as spherical subfamily
models [2], locally linear embedding [11], and curved
multinomial subfamilies [3]. Once such a submanifold is
found, distances dðx; yÞ may be computed as the lengths of
shortest paths on the submanifold connecting x and y. As
shown in Section 3, this approach is a limiting case of
learning a Riemannian metric for the high-dimensional
embedding space.

Lower dimensional representations are useful for visua-
lizing high-dimensional data. However, these methods
assume strict conditions that are often violated in real-
world, high-dimensional data. The obtained submanifold is
tuned to the training data and new data points will likely lie
outside the submanifold due to noise. It is necessary to
specify some way of projecting the off-manifold points into
the manifold. There is no notion of non-Euclidean geometry
outside the submanifold and if the estimated submanifold
does not fit current and future data perfectly, Euclidean
projections are usually used.

Another source of difficulty is estimating the dimension
of the submanifold. The dimension of the submanifold is
notoriously hard to estimate for high-dimensional sparse
data sets. Moreover, the data may have different lower
dimensions in different locations or may lie on several
disconnected submanifolds, thus violating the assumptions
underlying the submanifold approach.

We propose an alternative approach to the metric learning
problem. The obtained metric is local, thus capturing local
variations within the space and is defined on the entire
embedding space. A set of metric candidates is represented as
a parametric family of transformations or, equivalently, as a
parametric family of statistical models and the obtained
metric is chosen from it based on some performance criterion.
We examine the application of the metric learning techniques
in the context of classification of text documents and images
and provide experimental results for text classification.

In Section 3, we discuss our formulation of the
Riemannian metric problem. Section 4 describes the set of
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metric candidates as pull-back metrics of a group of
transformations followed by a discussion of the resulting
generative model in Section 6. In Section 7, we apply the
framework to text classification and report experimental
results on the WebKB data. The appendix contains a review
of relevant concepts from Riemannian geometry.

2 THE FISHER GEOMETRY

In this section, we describe some well-known results
concerning the Fisher geometry of a space of probability
distributions. The reader may want to consult the appendix
at this point for a review of relevant concepts from
Riemannian geometry. For more details on the Fisher
geometry, refer to the monographs [5], [1].

Parametric inference in statistics is concerned with a
parametric family of distributionsfpðx; �Þ : � 2 � � IRngover
the event spaceX . If the parameter space � is a differentiable
manifold and the mapping � 7!pðx ; �Þ is a diffeomorphism,
we can identify statistical models in the family as points on the
manifold �. In this paper, we will mostly be concerned with
the manifold of multinomial models1

PPn ¼ � 2 IRnþ1 : 8i �i > 0;
X
i

�i ¼ 1

( )
:

The manifold PPn is described as a subset of IRnþ1 despite the
fact that it is an n-dimensional manifold. This notation leads
to substantially simpler expressions later on. Notice that the
above manifold contains a parameter vector � of the multi-
nomial distribution—that also happens to be a probability
vector by itself. The simplex PP is a submanifold of IRnþ1 and,
as such, we can write its tangent vectors in the standard base
of IRnþ1. Using this expression for tangent vectors, it is easy to
identify the tangent space of the simplex as

T�PPn ¼ v 2 IRnþ1 :
Xnþ1

i¼1

vi ¼ 0

( )
:

Note that the above representation of T�PP does not depend
on � and is not unique. Since the tangent space T�PPn is an
n-dimensional vector space, we can express tangent vectors
as vectors in IRnþ1 in many ways, each corresponding to a
specific choice of a base.

The Fisher information matrix Efss>g, where s is the
gradient of the log-likelihood: ½s�i ¼ @ log pðx ; �Þ=@�i, may
be used to endow � with the following Riemannian metric

J �ðu; vÞ¼def
X
i;j

uivj

Z
pðx; �Þ @

@�i
log pðx ; �Þ @

@�j
log pðx; �Þdx

¼
X
i;j

uivj E
@ log pðx; �Þ

@�i

@ log pðx; �Þ
@�j

� �
;

ð1Þ

where the above integral is replaced with a sum if X is
discrete. Note that, in this paper, we adopt the terminology
of differential geometry: A symmetric, positive definite
bilinear form (local inner product) is referred to as the

metric, rather than the distance function dð�; �Þ. Consult
Appendix A for further details.

Another important manifold that will appear in this
paper is the positive sphere

SSnþ ¼ � 2 IRnþ1 : 8i �i > 0;
X
i

�2
i ¼ 1

( )
:

Tangent vectors to the positive sphere, much like the
simplex, may be written in the standard basis of IRnþ1

leading to the following identification of the tangent space

T�SS
n
þ ¼ v 2 IRnþ1 :

Xnþ1

i¼1

vi�i ¼ 0

( )
:

Using the above expression for tangent vectors, the metric �
on SSnþ defined as ��ðu; vÞ¼defPnþ1

i¼1 uivi has the same func-
tional form as the standard Euclidean inner product. Since
this inner product characterizes Euclidean geometry, the
local geometry of ðSSnþ; �Þ is the Euclidean geometry,
restricted to the sphere.

Fortunately, distances dJ ð�; �Þ (see (13) for the definition
of dJ ) on ðPP;J Þ have a closed form expression. The
expression is obtained by noticing that

f : PP! SSnþ fð�Þ ¼
ffiffiffiffiffi
�1

p
; . . . ;

ffiffiffiffiffiffiffiffiffi
�nþ1

p� �
is an isometry between ðPP;J Þ, and ðSSnþ; �Þ, and noticing
that d�ð�; �Þ is given by the length of the great circle
connecting the two points d�ð�; �Þ ¼ arccosð

P
�i�iÞ. It then

follows that

dJ ð�; �Þ ¼ d�ðfð�Þ; fð�ÞÞ ¼ arccos
Xnþ1

i¼1

ffiffiffiffiffiffiffiffi
�i�i

p !
:

See Appendix A.3 for a definition of isometry in differential
geometry. It is well-known that the transformation f : PP!
SSnþ is an isometry. A proof may be found at Section 4.1 of [7].

3 THE METRIC LEARNING PROBLEM

The metric learning problem may be formulated as follows:
Given a differentiable manifold M and a data set
D ¼ fx1; . . . ; xNg � M, select a Riemannian metric g from a
set of metric candidatesG. As in statistical inference,Gmay be
a parametric family G ¼ fg� : � 2 � � IRkg or as in nonpara-
metric statistics a less constrained set of candidates. We focus
on the parametric approach, as we believe it to generally
perform better for high-dimensional sparse data such as text
documents. We use a superscript for the parameter g� since
the subscript of the metric is reserved for its value at a
particular point of the manifold (see Appendix A.3).

Let feigi represent a basis of the tangent space TxM. The
volume element of g at x is defined as dvol gðxÞ¼def ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detGðxÞ
p

,
whereGðxÞ is thematrixwhoseentriesare ½GðxÞ�ij ¼ gxðei; ejÞ.
Note that detGðxÞ > 0 since GðxÞ is positive definite.
Intuitively, the volume element dvol gðxÞ summarizes
the “size” of the metric g at x in one scalar (it is originally a
bilinear form or a matrix). Similarly, the inverse volume
element measures the “smallness” of the metric at x. Paths
crossingareaswithhighinversevolumewill tendtobeshorter
than paths over an area with high inverse volume.

498 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 4, APRIL 2006

1. The parameters � are required to be positive for the simplex to be a
manifold, rather than a manifold with corners. This is a technical issue and
does not influence possible applications.



The size of the metric at a data set D ¼ fx1; . . . ; xNg may
be measured as the product of the inverse volume elements
at the points xi. One problem is that the above quantity is
unbounded. This can be demonstrated using basic proper-
ties of determinants dvol ðcgðxÞÞ ¼ cn=2dvol ðgðxÞÞ. A simple
solution is to enforce the total volume to be constant
through normalizing. We therefore propose to choose the
metric based on the following objective function

Oðg;DÞ ¼
YN
i¼1

ðdvol gðxiÞÞ�1R
Mðdvol gðxÞÞ�1 dx

: ð2Þ

Maximizing the inverse volume in (2) will result in shorter
curves across densely populated regions ofM. As a result,
the geodesics will tend to pass through densely populated
regions. This agrees with the intuition that distances
between data points should be measured on the lower
dimensional data submanifold, thus capturing the intrinsic
geometrical structure of the data. Note that the normalized
inverse volume element may be seen as a probability
distribution over the manifold and maximizing Oðg;DÞmay
be considered as a maximum-likelihood problem. The
normalization in O is necessary for the same reason it is
necessary in probabilities. We are not interested in the total
mass but in local variations of it.

If G is completely unconstrained, the metric maximizing
the above criterion will have a volume element tending to 0
at the data points and þ1 everywhere else. Such a solution
is analogous to estimating a distribution by an impulse train
at the data points and 0 elsewhere (the empirical distribu-
tion). As in statistics, we avoid this degenerate solution by
restricting the set of candidates G to a constrained set of
smooth functions.

The case of extracting a low-dimensional submanifold (or
linear subspace) may be recovered from the above framework
if g 2 G is equal to the metric inherited from the embedding
Euclidean space across a submanifold and tending to þ1
outside. In this case, distances between two points on the
submanifold will be measured as the shortest curve on the
submanifold using the Euclidean length element.

If G is a parametric family of metrics G ¼ fg� : � 2 �g, the
log of the objective function O is equivalent to the log
likelihood of the data ‘ð�Þ under the model

pðx;�Þ ¼ 1

Z
dvol gðxÞð Þ�1:

As a side note, if g ¼ J the above model is the inverse of
Jeffreys’ prior pðxÞ / dvol J ðxÞ a widely studied distribu-
tion in Bayesian statistics. However, in the case of Jeffreys’
prior, the metric is known in advance and there is no need
for parameter estimation. For prior work on connecting
volume elements and densities on manifolds, refer to [10].

Specifying the family of metrics G is not an intuitive task.
Metrics are specified in terms of a local inner product and it
may be difficult to understand the implications of a specific
choice on the resulting distances. Instead of specifying a
parametric family of metrics as discussed in the previous
section, we specify a parametric family of transformations
fF� : � 2 �g. The resulting set of metric candidates will be the
pull-back metrics G ¼ fF ��J : � 2 �g of the Fisher informa-
tion metricJ (See Appendix A.3 for the definition of the pull-
back metric F �g with respect to a transformation F and a
metric g). Since the metrics are pull-back metrics of the Fisher
information for the multinomial distribution, a closed form

expression for the distance dF �
�
J ðx; yÞ is readily available (see

Appendix A.3).
Denoting the metric inherited from the embedding

Euclidean space by �, we define f to be a flattening
transformation if f : ðM; gÞ ! ðN ; �Þ is an isometry. In this
case, distances on the manifold ðM; gÞ ¼ ðM; f��Þ may be
measured as the shortest Euclidean path on the manifold N
between the transformed points. Such a computation is
often simpler than the original distance computation for an
arbitrary metric. A flattening transformation f , thus takes a
locally distorted space and converts it into a subset of IRn

equipped with the local Euclidean metric �ðu; vÞ ¼
P

i uivi.
In the next sections, we work out in detail an implementa-

tion of the above framework in which the manifoldM is the
multinomial simplex PPn.

4 A PARAMETRIC CLASS OF METRICS

Consider the following family of diffeomorphisms F� :
PPn ! PPn

F�ðxÞ¼def x1�1

hx; �i ; . . . ;
xnþ1�nþ1

hx; �i

� �
; � 2 PPn:

The family F� is a Lie group of transformations under
composition whose parametric space is � ¼ PP. The identity
element is ð 1

nþ1 ; . . . ; 1
nþ1Þ and the inverse of F� is ðF�Þ�1 ¼ F�,

where

�i ¼
1=�iP
k 1=�k

:

The above transformation group acts on x 2 PPn by increasing
the components of x with high �i values while remaining in
the simplex. Fig. 1 illustrates how to visualize PP2 in two
dimensions and Fig. 2 illustrates the above action in PP2.

We will consider the pull-back metrics of the Fisher
information J through the above transformation group as
our parametric family of metrics G ¼ fF ��J : � 2 PPng. Note
that since the Fisher information itself is a pullback metric
from the sphere under the square root transformation, we
have that F ��J is also the pull-back metric of ðSSnþ; �Þ through
the transformation

F̂F�ðxÞ¼def

ffiffiffiffiffiffiffiffiffiffiffiffi
x1�1

hx; �i

s
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnþ1�nþ1

hx; �i

s !
; � 2 PPn:

As a result of the above observation we have the following
closed form for the geodesic distance under F ��J
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Fig. 1. The 2-simplex PP2 may be visualized as (a) a surface in IR3 or
(b) as a triangle in IR2.



dF �
�
J ðx; yÞ ¼ acos

Xnþ1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�i
hx; �i

yi�i
hy; �i

s !

¼ acos
Xnþ1

i¼1

�i

ffiffiffiffiffiffiffiffi
xiyi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; �ihy; �i

p
 !

:

ð3Þ

The above distance is surprisingly similar to the tfidf cosine
similarity measure [4]. The differences are the square root, the
normalization and the choice of non-idf � parameters in (3).

5 COMPUTING THE VOLUME ELEMENT OF F ��J
To apply the framework described in Section 3 to the
metric F ��J , we need to compute the volume element
given by the square root of the determinant of the Gram
matrix of F ��J . This is done in several stages. First, the
Gram matrix G is computed, then some useful lemmas
concerning matrix determinants are proven and, finally,
we compute det G.

5.1 Computing the Gram Matrix G

We start by computing the Gram matrix ½G�ij ¼ F ��J ð@i; @jÞ,
where f@igni¼1 is a basis for T�PPn given by the rows of the
matrix

U ¼

1 0 � � � 0 �1
0 1 � � � 0 �1
..
.

0 . .
.

0 �1
0 0 � � � 1 �1

0
BB@

1
CCA 2 IRn�nþ1 ð4Þ

and then proceed by computing detG in Propositions 1 and 2
below. Note that since the determinant is invariant under
change of basis, we are free to select the convenient base
expressed by the rows of (4).

Proposition 1. The matrix ½G�ij ¼ F ��J ð@i; @jÞ is given by

G ¼ JJ> ¼ UðD� ��>ÞðD� ��>Þ>U>; ð5Þ

whereD 2 IRnþ1�nþ1 is a diagonal matrix whose entries are

½D�ii ¼

ffiffiffiffiffi
�i
xi

s
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
hx; �i

p
and � is a column vector given by

½��i ¼

ffiffiffiffiffi
�i
xi

s
xi

2hx; �i3=2
:

Note that all vectors are treated as column vectors and
for �; � 2 IRnþ1, ��> 2 IRnþ1�nþ1 is the outer product matrix
½��>�ij ¼ �i�j.
Proof. The jth component of the vector F̂F��v is

½F̂F��v�j ¼
d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj þ tvjÞ�j
hxþ tv; �i

s 					
t¼0

¼ 1

2

vj�jffiffiffiffiffiffiffiffiffi
xj�j

p ffiffiffiffiffiffiffiffiffiffiffiffi
hx; �i

p � 1

2

hv; �i
ffiffiffiffiffiffiffiffiffi
xj�j

p
hx; �i3=2

:

Taking the rows of U to be the basis f@igni¼1 for TxPPn

we have, for i ¼ 1; . . . ; n and j ¼ 1; . . . ; nþ 1,

½F̂F��@i�j ¼
�j½@i�j

2
ffiffiffiffiffiffiffiffiffi
xj�j

p ffiffiffiffiffiffiffiffiffiffiffiffi
hx; �i

p �
ffiffiffiffiffiffiffiffiffi
xj�j

p
2hx; �i3=2

h@i; �i

¼ �j;i � �j;nþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
hx; �i

p
ffiffiffiffiffi
�j
xj

s
� �i � �nþ1

2hx; �i3=2

ffiffiffiffiffi
�j
xj

s
xj:

If we define J 2 IRn�nþ1 to be the matrix whose rows
are fF̂F�@igni¼1, we have J ¼ UðD� ��>Þ.

Since the metric F ��J is the pullback of � through F̂F�,

we have ½G�ij ¼ hF̂F��@iF̂F��@ji and G ¼ JJ> ¼ UðD� ��>Þ
ðD� ��>Þ>U>. tu
Before we turn to computing the determinant of the

matrix G above, we prove Lemmas 1 and 2 below that will
prove to be useful in computing detG.

5.2 Some Useful Lemmas Concerning Matrix
Determinants

The determinant of a matrix detA 2 IRn�n may be seen as a
function of the rows of A, fAigni¼1

f : IRn � � � � � IRn ! IR fðA1; . . . ; AnÞ ¼ detA:

The multilinearity property of the determinant means that
the function f above is linear in each of its components

8j ¼ 1; . . . ; n fðA1; . . . ; Aj�1; Aj þBj;Ajþ1; . . . ; AnÞ
¼ fðA1; . . . ; Aj�1; Aj; Ajþ1; . . . ; AnÞ
þ fðA1; . . . ; Aj�1; Bj; Ajþ1; . . . ; AnÞ:

Lemma 1. Let D 2 IRn�n be a diagonal matrix with D11 ¼ 0 and
1 a matrix of ones. Then,

detðD� 1Þ ¼ �
Ym
i¼2

Dii:
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Fig. 2. F� acting on PP2 for (a) � ¼ ð 2
10 ;

5
10 ;

3
10Þ and (b) F�1

� acting on PP2. The arrows indicate the mapping that transforms x to (a) F�ðxÞ or (b) F�1
� ðxÞ.



Proof. Subtract the first row from all the other rows to

obtain

�1 �1 � � � �1
0 D22 � � � 0

� � � � � � . .
.

� � �
0 0 � � � Dmm

0
BBB@

1
CCCA:

Now, compute the determinant by the cofactor expan-

sion along the first column to obtain

detðD� 1Þ ¼ ð�1Þ
Ym
j¼2

Djj þ 0þ 0þ � � � þ 0:

ut

Lemma 2. Let D 2 IRn�n be a diagonal matrix and 1 a matrix of

ones. Then,

detðD� 1Þ ¼
Ym
i¼1

Dii �
Xm
i¼1

Y
j6¼i

Djj:

Proof. Using the multilinearity property of the determinant,

we separate the first row of D� 1 as ðD11; 0; . . . ; 0Þ þ
ð�1; . . . ;�1Þ. The determinant detD� 1 then becomes

detAþ detB, whereA isD� 1 with the first row replaced

by ðD11; 0; . . . ; 0Þ and B is the D� 1 with the first row

replaced by a vector of �1.

Using Lemma 1, we have detB ¼ �
Qn

j¼2 Djj. The

determinant detA may be expanded along the first

row resulting in detA ¼ D11M11, where M11 is the

minor resulting from deleting the first row and the

first column. Note that M11 is the determinant of a

matrix similar to D� 1 but of size n� 1� n� 1.
Repeating recursively the above multilinearity argu-

ment, we have

detðD� 1Þ ¼

�
Yn
j¼2

Djj þD11

 
�
Yn
j¼3

Djj þD22

 
�
Yn
j¼4

Djj þD33

 
�
Yn
j¼5

Djj þD44ð� � �Þ
!!!

¼
Yn
i¼1

Dii �
Xn
i¼1

Y
j 6¼i

Djj:

ut

5.3 Computing det G

Proposition 2. The determinant of the Gram matrix G of the

metric F ��J is

detG /
Qnþ1

i¼1 ð�i=xiÞ
hx; �inþ1

: ð6Þ

Proof. We will factorG into a product of square matrices and

compute detG as the product of the determinants of each

factor.
By factoring a diagonal matrix �, ½��ii ¼

ffiffiffiffi
�i
xi

q
1

2
ffiffiffiffiffiffiffiffi
hx;�i
p

from D� ��>, we have

J ¼ U I � �x>

hx; �i

� �
� ð7Þ

G ¼ U I � �x>

hx; �i

� �
�2 I � �x>

hx; �i

� �>
U>: ð8Þ

Note that G ¼ JJ> is not the desired decomposition

since J is not a square matrix.

We proceed by studying the eigenvalues and eigenvec-

tors of I � �x>

hx;�i in order to simplify (8) via an eigenvalue

decomposition. First, note that, if ðv; �Þ is an eigenvector-

eigenvalue pair of �x>

hx;�i , then ðv; 1� �Þ is an eigenvector-

eigenvalue pair of I � �x>

hx;�i . Next, note that vectors v such

that x>v ¼ 0 are eigenvectors of �x>

hx;�i with eigenvalue 0.

Hence, they are also eigenvectors of I � �x>

hx;�i with eigenva-

lue 1. There arensuch independent vectorsv1; . . . ; vn. Since

traceðI � �x>

hx;�iÞ ¼ n, the sum of the eigenvalues is alson and

we may conclude that the last of the nþ 1 eigenvalues is 0.
The eigenvectors of I � �x>

hx;�i may be written in several
ways. One possibility is as the columns of the following
matrix

V ¼

� x2

x1
� x3

x1
� � � � xnþ1

x1
�1

1 0 � � � 0 �2

0 1 � � � 0 �3

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 �nþ1

0
BBBBB@

1
CCCCCA 2 IRnþ1�nþ1;

where the first n columns are the eigenvectors that

correspond to unit eigenvalues and the last eigenvector

corresponds to a 0 eigenvalue.
Using the above eigenvector decomposition, we have

I � �x>

hx;�i ¼ V ~IIV �1 and ~II is a diagonal matrix containing
all the eigenvalues. Since the diagonal of ~II is
ð1; 1; . . . ; 1; 0Þ, we may write I � �x>

hx;�i ¼ V jnV �1jn, where
V jn 2 IRnþ1�n is V with the last column removed and
V �1jn 2 IRn�nþ1 is V �1 with the last row removed.

We have then,

detG ¼ det
�
UðV jnV �1jnÞ�2ðV �1jn>V jn>ÞU>

�
¼ det

�
ðUV jnÞðV �1jn�2V �1jn>ÞðV jn>U>Þ

�
¼
�

detðUV jnÞ
�2

det
�
V �1jn�2V �1jn>

�
:

Noting that

UV jn ¼

� x2

x1
� x3

x1
� � � � xn

x1
� xnþ1

x1
� 1

1 0 � � � 0 �1
0 1 � � � 0 �1
..
. ..

. . .
. ..

. ..
.

0 0 � � � 1 �1

0
BBBB@

1
CCCCA 2 IRn�n;

we factor 1=x1 from the first row and add columns 2; . . . ; n

to column 1, thus obtaining

�
Pnþ1

i¼1 xi �x3 � � � �xn �xnþ1 � x1

0 0 � � � 0 �1
0 1 � � � 0 �1
..
. ..

. . .
. ..

. ..
.

0 0 � � � 1 �1

0
BBBBB@

1
CCCCCA:

LEBANON: METRIC LEARNING FOR TEXT DOCUMENTS 501



Computing the determinant by minor expansion of the

first column, we obtain

detðUV jnÞ2 ¼ 1

x1

Xnþ1

i¼1

xi

 !2

¼ 1

x2
1

: ð9Þ

We proceed by computing detV �1jn�2V �1jn>.

The inverse of V , as may be easily verified is,

V �1 ¼ 1

hx; �i
�x1�2 hx;�i�x2�2 �x3�2 ��� �xnþ1�2

�x1�3 �x2�3 hx;�i�x3�3 ��� �xnþ1�3

..

. ..
. . .

.

�x1�nþ1 �x2�nþ1 ��� ��� hx;�i�xnþ1�nþ1

x1�1 x2�1 ��� ��� xnþ1�1

0
BBBBBB@

1
CCCCCCA
:

Removing the last row gives

V �1jn ¼ 1

hx; �i
�x1�2 hx;�i�x2�2 �x3�2 ��� �xnþ1�2

�x1�3 �x2�3 hx;�i�x3�3 ��� �xnþ1�3

..

. ..
. . .

.

�x1�nþ1 �x2�nþ1 ��� ��� hx;�i�xnþ1�nþ1

0
BBB@

1
CCCA;

¼ 1

hx; �iP

�x1 hx;�i=�2�x2 �x3 ��� �xnþ1

�x1 �x2 hx;�i=�3�x3 ��� �xnþ1

..

. ..
. . .

.

�x1 �x2 ��� ��� hx;�i=�nþ1�xnþ1

0
BBB@

1
CCCA;

where

P ¼

�2 0 � � � 0
0 �3 � � � 0

..

. . .
. ..

.

0 0 0 �nþ1

0
BBB@

1
CCCA:

½V �1jn�2V �1jn>�ij is the scalar product of the i and j rows

of the following matrix

V �1jn� ¼ 1

2
hx; �i�3=2P

�
ffiffiffiffiffiffi
x1�1
p hx;�iffiffiffiffiffiffi

x2�2
p �

ffiffiffiffiffiffi
x2�2
p

�
ffiffiffiffiffiffi
x3�3
p

��� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xnþ1�nþ1
p

� ffiffiffiffiffiffi
x1�1
p

�
ffiffiffiffiffiffi
x2�2
p hx;�iffiffiffiffiffiffi

x3�3
p �

ffiffiffiffiffiffi
x3�3
p

��� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xnþ1�nþ1
p

..

. ..
. . .

.

�
ffiffiffiffiffiffi
x1�1
p

�
ffiffiffiffiffiffi
x2�2
p

��� ��� hx;�iffiffiffiffiffiffiffiffiffiffiffiffiffi
xnþ1�nþ1
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xnþ1�nþ1
p

0
BBBBB@

1
CCCCCA:

We therefore have

V �1jn�2V �1jn> ¼ 1

4
hx; �i�2PQP;

where

Q ¼

hx;�i
x2�2
� 1 �1 � � � �1

�1 hx;�i
x3�3
� 1 � � � �1

..

. . .
. ..

.

�1 �1 �1 hx;�i
xnþ1�nþ1

� 1

0
BBBB@

1
CCCCA:

As a consequence of Lemma 2, we have

detQ ¼ x1�1
hx; �inQnþ1
i¼1 xi�i

� x1�1

hx; �in�1Pnþ1
j¼2 xj�jQnþ1

i¼1 xi�i

¼ x2
1�

2
1

hx; �in�1Qnþ1
i¼1 xi�i

and

detV �1jn�2V �1jn> ¼ ð1=4Þnhx; �i�2n
Ynþ1

i¼2

�i

 !

x2
1�

2
1

hx; �in�1Qnþ1
i¼1 xi�i

Ynþ1

i¼2

�i

 !
¼ x

2
1hx; �i

n�1

4nhx; �i2n
Ynþ1

i¼1

�i
xi
:

This proves the proposition since multiplying detV �1jn

�2V �1jn>
n above by (9) gives (6). tu

Propositions 1 and 2 reveal the form of the objective

function Oðg;DÞ. Fig. 3 displays the inverse volume element

on PP1 with the corresponding geodesic distance from the

left corner of PP1. In the next section, we describe a

maximum-likelihood estimation problem that is equivalent

to maximizing Oðg;DÞ and study its properties.

6 AN INVERSE VOLUME PROBABILISTIC MODEL

Using Proposition 2, we have that the objective function

Oðg;DÞ may be regarded as a likelihood function under the

model

pðx;�Þ ¼ 1

Z
hx; �i

nþ1
2

Ynþ1

i¼1

x
1=2
i x; � 2 PPn; ð10Þ

where Z ¼
R
PPn
hx; �i

nþ1
2
Qnþ1

i¼1 x
1=2
i dx. The loglikelihood func-

tion for model (10) is given by

‘ð�;xÞ ¼ nþ 1

2
logðhx; �iÞ � log

Z
PPn

hx; �i
nþ1

2

Ynþ1

i¼1

ffiffiffiffiffi
xi
p

dx:

The Hessian matrix Hðx; �Þ of the log-likelihood function

may be written as

½Hðx; �Þ�ij ¼ �k
xi
hx; �i

xj
hx; �i � ðk

2 � kÞL xi
hx; �i

xj
hx; �i

� �

þ k2L
xi
hx; �i

� �
L

xj
hx; �i

� �
;

where k ¼ nþ1
2 and L is the positive linear functional

Lf ¼
R
PPn
hx; �i

nþ1
2
Qnþ1

l¼1

ffiffiffiffi
xl
p

fðx; �Þ dxR
PPn
hx; �i

nþ1
2
Qnþ1

l¼1

ffiffiffiffi
xl
p

dx
:

502 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 4, APRIL 2006



Note that the matrix given by LHðx; �Þ ¼ ½LHijðx; �Þ� is

negative definite due to its covariance-like form. In other

words, for every value of �, Hðx; �Þ is negative definite on

average, with respect to the model pðx;�Þ. While not as

strong as negative definite, this property indicates a

favorable condition for maximization.

6.1 Computing the Normalization Term

We describe an efficient way to compute the normalization

term Z through the use of dynamic programming and Fast

Fourier Transform (FFT).
Assuming that n ¼ 2k� 1 for some k 2 NN, we have

Z ¼
Z

PPn

hx; �ik
Ynþ1

i¼1

x
1=2
i dx ¼

X
a1þ���þanþ1¼k:ai�0

k!

a1! � � � anþ1!

Ynþ1

j¼1

�
aj
j

Z
PPn

Ynþ1

j¼1

x
ajþ1

2
j dx /

X
a1þ���þanþ1¼k:ai�0

Ynþ1

j¼1

�ðaj þ 3=2Þ
�ðaj þ 1Þ �

aj
j :

The following proposition and its proof describe a way to

compute the summation in Z in Oðn2 lognÞ time.

Proposition 3. The normalization term for model (10) may be

computed in Oðn2 lognÞ time complexity.

Proof. Using the notation cm ¼ �ðmþ3=2Þ
�ðmþ1Þ the summation in Z

may be expressed as

Z /
Xk
a1¼0

ca1
�a1

1

Xk�a1

a2¼0

ca2
�a2

2 � � �

Xk�
Pn�1

j¼1
aj

an¼0

can�
an
n ck�

Pn

j¼1
aj
�
k�
Pn

j¼1
aj

nþ1 :

ð11Þ

A trivial dynamic program can compute (11) in Oðn3Þ
complexity.

However, each of the single subscript sums in (11) is,
in fact, a linear convolution operation. By defining

Bij ¼
Xj
ai¼0

cai�
ai
i � � �

Xj�
Pn�1

l¼i al

an¼0

can�
an
n cj�

Pn

l¼i al
�
j�
Pn

l¼i al
nþ1 ;

we have Z ¼ B1k and the recurrence relation Bij ¼Pj
m¼0 cm�

m
i Biþ1;j�m which is the linear convolution of

fBiþ1;jgkj¼0 with the vector fcj�jig
k
j¼0. By performing the

convolution in the frequency domain (i.e., multiplying
the FFT of the vectors and then computing the inverse
FFT), filling in each row of the table Bij for i ¼
0; . . . ; nþ 1; j ¼ 0; . . . ; k takes Oðn lognÞ complexity lead-
ing to a total of Oðn2 lognÞ complexity. tu
The computation method described in the proof may be

used to compute the partial derivative of Z, resulting in
Oðn3 lognÞ computation for the gradient. By careful
dynamic programming, the gradient vector may be com-
puted in Oðn2 lognÞ time complexity as well.

7 APPLICATIONS

7.1 Text Classification

In this section, we describe applying the metric learning
framework to document classification and report some
results on the WebKB data set. We map documents to the
simplex by multinomial MLE or MAP estimation. This
mapping results in the well-known term-frequency (tf)
representation where the multinomial model entries are the
frequencies of the different terms in the document.

It is a well-known fact that less common terms across the
text corpus tend to provide more discriminative informa-
tion than the most common terms. In the extreme case,
stopwords like the, or, and of are often severely down-
weighted or removed from the representation. Geometri-
cally, this means that we would like the geodesics to pass
through corners of the simplex that correspond to sparsely
occurring words, in contrast to densely populated simplex
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Fig. 3. (a) The inverse volume element 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGðxÞ

p
as a function of x 2 PP1 and (b) the geodesic distance dðx; 0Þ from the left corner as a function

x 2 PP1. Different plots represent different metric parameters � 2 fð1=2; 1=2Þ; ð1=3; 2=3Þ; ð1=6; 5=6Þ; ð0:0099; 0:9901Þg.



corners such as the ones that correspond to the stop-words
above. To account for this in our framework, we use the
metric F ��J ¼ ðF�1

� Þ
�J , where � is the MLE under model

(10) obtained by a gradient descent, modified to work in PPn,
with early stopping procedure. In other words, we are
pulling back the Fisher information metric through the
inverse to the transformation that maximizes the normal-
ized inverse volume of D. As a result, geodesics will tend to
pass through sparsely populated regions emphasizing
differences in dimensions that correspond to rare words.

The standard tfidf representation of a document consists
of multiplying the tf parameter by an idf component

idfk ¼ log
N

#documents that word k appears in
:

Given the tfidf representation of two documents, their

cosine similarity is simply the scalar product between the

two normalized tfidf representations. Despite its simplicity

the tfidf representation leads to some of the best results in

text classification (e.g., [4]) and information retrieval and is

a natural candidate for a baseline comparison due to its

similarity to the geodesic expression.

A comparison of the top and bottom terms between the
metric learning and idf scores is shown in Fig. 4. Note that
both methods rank similar words at the bottom. These are the
most common words such as this, at, etc., that often carry
little or no information for classification purposes. The top
words, however, are completely different for the two
schemes. Note the tendency of idf to give high scores to rare
proper nouns while the metric learning method gives high
scores for rare common nouns. This difference may be
explained by the fact that idf considers appearance of words
in documents as a binary event while the metric learning looks
at the number of appearances of a term in each document
through the documents representation as term frequencies.
As a result, the total number of appearances of each term in the
corpus is taken into account rather than the number of
documents it appears in. Rare proper nouns such as the high
scoring idf terms in Fig. 4 appear several times in a single Web
page. As a result, these words will score higher with the idf
scheme but lower with the metric learning scheme.

In Fig. 5, the rank-value plot for the estimated � values
and idf is shown on a log-log scale. The x axis represents
different words that are sorted by increasing parameter
value and the y axis represents the � or idf value. An
experimental observation is that the idf scores show a
stronger linear trend in the log-log scale than the � values.

To measure performance in classification we compared
the testing error of a nearest neighbor classifier under two
different distances. We compared geodesic distance under
the learned metric with tfidf cosine similarity. Fig. 6
displays test-set error rates as a function of the training
set size. The error rates were averaged over 30 experiments
with random sampling of a fixed size training set.
According to Fig. 6, the learned metric outperforms the
standard tfidf measure by a considerable amount.

7.2 Image Classification

Images are typically represented as a two-dimensional
array of pixels taking values in some bounded continuous
range, e.g., � ¼ ð0; 1Þ100�100 ffi ð0; 1Þ10;000. A metric g on the
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Fig. 4. Comparison of top and bottom valued parameters for idf and
model (10). The words are sorted by their idf or � values. The data set is
the faculty versus student Web page classification task from WebKB
data set. Note that the least scored terms are similar for the two methods
while the top scored terms are completely disjoint.

Fig. 5. (a) Log-log plots for sorted idf values and (b) the sorted � values of the learned metric. The task is the same as in Fig. 4.



resulting manifold � is specified by defining its values for

every pair of basis tangent vectors at each point in �

g�ðeij; eklÞ i; k ¼ 1; . . . ; n j; l ¼ 1; . . . ;m 8� 2 �:

The value g�ðeij; eklÞ may be interpreted as the cost of

increasing the brightness of pixels ði; jÞ and ðk; lÞ simulta-

neously in the image �.
A reasonable restriction is to constrain g to a local

diagonal form g�ðeij; eklÞ ¼ �ik�jlfðNð�ijÞÞ, where f is some

function and Nð�ijÞ is a neighborhood of the pixel �ij. Using

the above intuition, this means that the cost depends only

on the neighborhood of the pixel and there is no pairwise

interaction when simultaneously changing the values of

two pixels. The volume element, in this case, is easily

computed to be dvolgð�Þ ¼
Q

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðNð�ijÞÞ

p
. The parametric

family of metrics reduces to a selection of a parametric

family of functions ff� : � 2 �g.
The learned metric would then capture local properties

of images in the training collection. For example, the metric

learned for face images would be different from the metric

learned for outdoors scene images. We leave the precise

specification of f� and experimental results for future work.

8 SUMMARY

We have proposed a new framework for the metric learning
problem that enables robust learning of a local metric for high-
dimensional sparse data. This is achieved by restricting the set
of metric candidates to a parametric family and selecting a
metric based on maximizing the inverse volume element.

In the case of learning a metric on the multinomial
simplex, the metric candidates are taken to be pull-back
metrics of the Fisher information under a continuous group
of transformations. Since the geometries are isometric to the
positive sphere equipped with the metric inherited from the
Euclidean space, the geodesic distances are easily com-
puted. Furthermore, the geometries are easily visualized
and are shown to be of a form similar to the popular tfidf
distances. The optimization problem, which may be cast as
a maximum-likelihood problem, selects a specific geometry
that is similar to tfidf, yet posseses qualitative differences
that enable it to outperform tfidf in text classification.

The framework proposed in this section is quite general

and may be employed in other domains. The key component

is the specification of the set of metric candidates by flattening

transformations and the ability to compute a closed form

expression for their volume elements.
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Fig. 6. Test set error rate for nearest neighbor classifier on WebKB binary tasks. Distances were computed by geodesic for the learned Riemannian

metric (dashed) and tfidf with cosine similarity (solid). The plots are averaged over a set of 30 random samplings of training sets of the specified

sizes, evenly divided between positive and negative examples. Error bars represent one standard deviation.



APPENDIX A

REVIEW OF RIEMANNIAN GEOMETRY

In this section, we describe concepts from Riemannian
geometry that are relevant to this paper. For more details,
refer to any textbook discussing Riemannian geometry,
e.g., [9].

Riemannian manifolds are built out of three layers of
structure. The topological layer is suitable for treating
topological notions such as continuity and convergence.
The differentiable layer allows extending the notion of
differentiability to the manifold and the Riemannian layer
defines rigid geometrical quantities such as distances,
angles, and curvature on the manifold. In accordance with
this philosophy, we start below with the definition of
topological manifold and quickly proceed to defining
differentiable manifolds and Riemannian manifolds.

A.1 Topological and Differentiable Manifolds

A homeomorphism between two topological spacesX and Y
is a bijection 	 : X ! Y for which both 	 and 	�1 are
continuous. We then say that X and Y are homeomorphic
and essentially equivalent from a topological perspective. An
n-dimensional topological manifold M is a topological
subspace of IRm;m � n that is locally equivalent to IRn, i.e.,
for every point x 2 M there exists an open neighborhood
U �M that is homeomorphic to IRn. The local homeomorph-
isms in the above definition 	U : U �M! IRn are usually
called charts. Note that this definition of a topological
manifold makes use of an ambient Euclidean space IRm (a
Euclidean space such that the manifold is its topological
subspace). While sufficient for our purposes, such a reference
to IRm is not strictly necessary and may be discarded at the
cost of certain topological assumptions2 [8]. Unless otherwise

noted, for the remainder of this section, we assume that all
manifolds are of dimension n.

We are now in a position to introduce the differentiable
structure. First, recall that a mapping between two open sets
of Euclidean spaces f : U � IRk ! V � IRl is infinitely differ-
entiable, denoted by f 2 C1ðIRk; IRlÞ if f has continuous
partial derivatives of all orders. If for every pair of
charts 	U; 	V , the transition function defined by

 : 	V ðU \ V Þ � IRn ! IRn;  ¼ 	U 
 	�1
V

(when U \ V 6¼ ;) is a C1ðIRn; IRnÞ differentiable map then
M is called an n-dimensional differentiable manifold. The
charts and transition function for a two-dimensional
manifold are illustrated in Fig. 7.

Differentiable manifolds of dimensions 1 and 2 may be
visualized as smooth curves and surfaces in Euclidean space.
Examples of n-dimensional differentiable manifolds are the
Euclidean space IRn, then-sphere SSn ¼ fx 2 IRnþ1 :

P
x2
i ¼ 1g

its positive orthant SSnþ ¼ fx 2 IRnþ1 :
P
x2
i ¼ 1; 8i xi > 0g,

and the n-simplex PPn ¼ fx 2 IRnþ1 :
P
xi ¼ 1; 8i xi > 0g.

Using the charts, we can extend the definition of
differentiable maps to real valued functions on manifolds
f :M! IR and functions from one manifold to another
f :M!N . A continuous function f :M! IR is said to be
C1ðM; IRÞ differentiable if for every chart 	U the function
f 
 	�1

U 2 C1ðIRn; IRÞ. A continuous mapping between two
differentiable manifolds f :M!N is said to be C1ðM;NÞ
differentiable if

8r 2 C1ðN ; IRÞ; r 
 f 2 C1ðM; IRÞ:

A diffeomorphism between two manifolds M;N is a
bijection f :M!N such that f 2 C1ðM;NÞ and
f�1 2 C1ðN ;MÞ.

A.2 The Tangent Space

For every point x 2 M, we define an n-dimensional real
vector space TxM, isomorphic to IRn, called the tangent
space. The elements of the tangent space, the tangent
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2. The general definition, that uses the Hausdorff and second
countability properties, is equivalent to the ambient Euclidean space
definition by Whitney’s embedding theorem. Nevertheless, it is consider-
ably more elegant to do away with the excess baggage of an ambient space.

Fig. 7. Two neighborhoods U; V in a two-dimensional manifold M, the coordinate charts 	U; 	V , and the transition function  between them.



vectors v 2 TxM, are usually defined as directional

derivatives at x operating on C1ðM; IRÞ differentiable

functions or as equivalence classes of curves having the

same velocity vectors at x. Intuitively, tangent vectors and

tangent spaces are a generalization of geometric tangent

vectors and spaces for smooth curves and two-dimensional

surfaces in the ambient IR3. For an n-dimensional manifold

M embedded in an ambient IRm the tangent space TxM is

a copy of IRn translated so that its origin is positioned at x.

See Fig. 8 for an illustration of this concept for two-

dimensional manifolds in IR3.
In many cases, the manifold M is a submanifold of an

m-dimensional manifold N , m � n. ConsideringM and its

ambient space IRm;m � n is one special case of this phenom-

enon. For example, both PPn and SSn are submanifolds of IRnþ1.

In these cases, the tangent space of the submanifold TxM is a

vector subspace of TxN ffi IRm and we may represent tangent

vectors v 2 TxM in the standard basis f@igmi¼1 of the

embedding tangent space TxIR
m as v ¼

Pm
i¼1 vi@i. For exam-

ple, for the simplex and the sphere we have (see Fig. 8)

TxPPn ¼ v 2 IRnþ1 :
Xnþ1

i¼1

vi ¼ 0

( )

TxSSn ¼ v 2 IRnþ1 :
Xnþ1

i¼1

vixi ¼ 0

( )
:

ð12Þ

A C1 vector field X on M is a smooth assignment of

tangent vectors to each point of M. We denote the set of

vector fields on M as XðMÞ and Xp is the value of the

vector field X at p 2M. Given a function f 2 C1ðM; IRÞ,
we define the action of X 2 XðMÞ on f as

Xf 2 C1ðM; IRÞ ðXfÞðpÞ ¼ XpðfÞ

in accordance with our definition of tangent vectors as

directional derivatives of functions.

A.3 Riemannian Manifolds

A Riemannian manifold ðM; gÞ is a differentiable manifold

M equipped with a Riemannian metric g. The metric g is

defined by a local inner product on tangent vectors

gxð�; �Þ : TxM� TxM! IR; x 2 M

that is symmetric, bilinear, positive definite, and C1

differentiable in x. By the bilinearity of the inner product
g, for every u; v 2 TxM

gxðv; uÞ ¼
Xn
i¼1

Xn
j¼1

viujgxð@i; @jÞ

and gx is completely described by fgxð@i; @jÞ : 1 � i; j � ng
—the set of inner products between the basis elements
f@igni¼1 of TxM. The Gram matrix ½GðxÞ�ij ¼ gxð@i; @jÞ is a
symmetric and positive definite matrix that completely
describe the metric gx.

The metric enables us to define lengths of tangent
vectors v 2 TxM by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxðv; vÞ

p
and lengths of curves 
 :

½a; b� ! M by

Lð
Þ ¼
Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
ðtÞð _

ðtÞ; _

ðtÞÞ

q
dt;

where _

ðtÞ is the velocity vector of the curve 
 at time t.
Using the above definition of lengths of curves, we can
define the distance dgðx; yÞ between two points x; y 2 M as

dgðx; yÞ ¼ inf

2�ðx;yÞ

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
ðtÞð _

ðtÞ; _

ðtÞÞ

q
dt; ð13Þ

where �ðx; yÞ is the set of piecewise differentiable curves
connecting x and y. The distance dg is called geodesic
distance and the minimal curve achieving it is called a
geodesic curve.3 Geodesic distance satisfies the usual
requirements of a distance and is compatible with the
topological structure of M as a topological manifold.

Given two Riemannian manifolds ðM; gÞ, ðN ; hÞ and a
diffeomorphism between them f :M!N , we define the
push-forward and pull-back maps below:

Definition 1. The push-forward map f� : TxM! TfðxÞN ,
associated with the diffeomorphism f :M!N is the
mapping that satisfies vðr 
 fÞ ¼ ðf�vÞr, 8r 2 C1ðN ; IRÞ
and 8v 2 TxM.

The push-forward is none other than a coordinate free
version of the Jacobian matrix J or the total derivative
operator associated with the local chart representation of f .
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Fig. 8. Tangent spaces of the 2-simplex TxPP2 and the 2-sphere TxSS2.

3. It is also common to define geodesics as curves satisfying certain
differential equations. The above definition, however, is more intuitive and
appropriate for our needs.



In other words, if we define the coordinate version of f :

M!N

~ff ¼ 	 
 f 
  �1 : IRn ! IRm;

where 	;  are local charts of N ;M then the push-forward

map is

f�u ¼ Ju ¼
X
i

X
j

@ ~ffi
@xj

uj

 !
ei;

where J is the Jacobian of ~ff and ~ffi is the i-component

function of ~ff : IRm ! IRn. Intuitively, as illustrated in Fig. 9,

the push-forward transforms velocity vectors of curves 
 to

velocity vectors of transformed curves fð
Þ.
Definition 2. Given ðN ; hÞ and a diffeomorphism f :M!N

we define a metric f�h onM called the pull-back metric by the

relation ðf�hÞxðu; vÞ ¼ hfðxÞðf�u; f�vÞ.
Definition 3. An isometry is a diffeomorphism f :M!N

between two Riemannian manifolds ðM; gÞ; ðN ; hÞ for which

gxðu; vÞ ¼ ðf�hÞxðu; vÞ 8x 2 M; 8u; v 2 TxM.

Isometries, as defined above, identify two Riemannian

manifolds as identical in terms of their Riemannian

structure. Accordingly, isometries preserve all the geo-

metric properties including the geodesic distance function

dgðx; yÞ ¼ dhðfðxÞ; fðyÞÞ. Note that the above definition of an

isometry is defined through the local metric in contrast to

the global definition of isometry in other branches of

mathematical analysis.
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Fig. 9. The map f :M!N defines a push forward map f� : TxM! TfðxÞN that transforms velocity vectors of curves to velocity vectors of the
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