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Learning String-Edit Distance
Eric Sven Ristad, Member, IEEE, and Peter N. Yianilos, Senior Member, IEEE

Abstract—In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is
the edit distance: The minimum number of insertions, deletions, and substitutions required to transform one string into the other. In
this report, we provide a stochastic model for string-edit distance. Our stochastic model allows us to learn a string-edit distance
function from a corpus of examples. We illustrate the utility of our approach by applying it to the difficult problem of learning the
pronunciation of words in conversational speech. In this application, we learn a string-edit distance with nearly one-fifth the error rate
of the untrained Levenshtein distance. Our approach is applicable to any string classification problem that may be solved using a
similarity function against a database of labeled prototypes.

Index Terms—String-edit distance, Levenshtein distance, stochastic transduction, syntactic pattern recognition, spelling correction,
string correction, string similarity, string classification, pronunciation modeling, Switchboard corpus.
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1 INTRODUCTION

N many applications, it is necessary to determine the
similarity of two strings. A widely-used notion of string

similarity is the edit distance: the minimum number of in-
sertions, deletions, and substitutions required to transform
one string into the other [14]. In this report, we provide a
stochastic model for string-edit distance. Our stochastic
interpretation allows us to automatically learn a string-edit
distance from a corpus of examples. It also leads to a vari-
ant of string-edit distance, that aggregates the many differ-
ent ways to transform one string into another. We illustrate
the utility of our approach by applying it to the difficult
problem of learning the pronunciation of words in the
Switchboard corpus of conversational speech [8]. In this
application, we learn a string-edit distance that reduces the
error rate of the untrained Levenshtein distance by a factor
of 4.7, to within 4 percent of the minimum error rate
achievable by any classifier.

Let us first define our notation. Let A be a finite alphabet

of distinct symbols and let xT ∈ AT denote an arbitrary

string of length T over the alphabet A. Then xi
j  denotes the

substring of xT that begins at position i and ends at position
j. For convenience, we abbreviate the unit length substring

xi
i  as xi and the length t prefix of xT as xt.

A string-edit distance is characterized by a triple <A, B, c>
consisting of the finite alphabets A and B and the primi-
tive cost function c : E → ℜ+ where ℜ+ is the set of

nonnegative reals, E = Es < Ed < Ei is the alphabet of primi-

tive edit operations, Es = A × B is the set of the substitutions,

Ed = A × {e} is the set of the deletions, and Ei = {e} × B is the

set of the insertions. Each such triple <A, B, c> induces a

distance function dc : A
* × B* → ℜ+ that maps a pair of strings

to a nonnegative value. The distance dc(x
t, yv) between two

strings xt ∈ At and yv ∈ Bv is defined recursively as
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where dc(e, e) = 0. The edit distance may be computed in
O(t ⋅ v) time using dynamic programming [17], [30]. Many
excellent reviews of the string-edit distance literature are
available [10], [13], [20], [28]. Several variants of the edit
distance have been proposed, including the constrained
edit distance [18] and the normalized edit distance [16].

A stochastic interpretation of string-edit distance was
first provided by Bahl and Jelinek [2], but without an algo-
rithm for learning the edit costs. The need for such a learn-
ing algorithm is widely acknowledged [10], [19], [28]. The
principal contribution of this report is an efficient algorithm
for learning the primitive edit costs from a corpus of exam-
ples. To the best of our knowledge, this is the first pub-
lished algorithm to automatically learn the primitive edit
costs. We initially implemented a two-dimensional variant
of our approach in August 1993 for the problem of classi-
fying greyscale images of handwritten digits.

The remainder of this report consists of four sections. In
Section 2, we define our stochastic model of string-edit dis-
tance and provide an efficient algorithm to learn the primi-
tive edit costs from a corpus of string pairs. In Section 3, we
provide a stochastic model for string classification prob-
lems, and provide an algorithm to estimate the parameters
of this model from a corpus of labeled strings. Our tech-
niques are applicable to any string classification problem
that may be solved using a string distance function against
a database of labeled prototypes. In Section 4, we apply our
modeling techniques to the difficult problem of learning the
pronunciations of words in conversational speech.
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2 STRING DISTANCE

We model string-edit distance as a memoryless stochastic
transduction between the underlying strings A* and the sur-
face strings B*. Each step of the transduction generates either
a substitution pair <a, b>, a deletion pair <a, e>, an insertion
pair <e, b>, or the distinguished termination symbol # ac-
cording to a probability function δ : E < {#} → [0, 1]. Being a
probability function, δ(⋅) satisfies the following constraints:

1)�∀z ∈ E < {#} [0 ≤ δ(z) ≤ 1]
2)�∑z∈E<{#} δ(z) = 1

Note that the null operation < e, e > is not included in the
alphabet E of edit operations.

A memoryless stochastic transducer φ = <A, B, δ> natu-
rally induces a probability function p(⋅|φ) on the space E*#
of all terminated edit sequences. This probability function is
defined by the following generation algorithm.

GENERATE(φ)
1. For n = 1 to ∞
2.  pick zn from E < {#} according to δ(⋅)
3.  if zn = # [return(zn);]

In our intended applications, we require a probability
function on string pairs rather than on edit sequences. In
order to obtain such a probability function, we consider a
string pair to be the equivalence class representative for all
edit sequences whose yield is that pair. Thus, the prob-
ability of a string pair is the sum of the probabilities of
all edit sequences for that string pair. Let ν(zn#) ∈ A* × B*

be the yield of the terminated edit sequence zn#. Then
we define p(xT, yV|φ) to be the probability of the complex
event ν−1(<xT, yV>),

p x y p zT V n

z z x yn n T V

, #
#: # ,
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where the probability p(zn#|φ) of a terminated edit se-
quence zn ∈ En is simply the product of the probabilities
δ(zi) of the individual edit operations because the trans-
ducer is memoryless.

THEOREM 1. p(⋅, ⋅ | φ) is a valid probability function on A* × B* if
and only if δ(⋅) is valid and δ(#) > 0.

PROOF. If δ(⋅) is a valid probability function and δ(#) > 0,
then p(⋅|φ) is a valid probability function on the set
E*# of all finite terminated edit sequences because E*#
is a complete prefix-free set. Each terminated edit
sequence zn# yields exactly one string pair ν(zn#).
Every string pair <xt, yv> in A* × B* is generated by at
least one edit sequence. Therefore, the set A* × B* par-
titions the set E*# and p(A* × B*|φ) = 1.

If δ(#) = 0, then p(zn#|φ) = p(zn|φ)δ(#) = 0 for all fi-
nite terminated edit sequences and p(A* × B*|φ) = 0
because all string pairs in A* × B* are finite. Or if δ(⋅)
is not valid, then p(zn#|φ) is invalid and p(A* × B*|φ)
must be invalid as well. o

The use of a distinguished termination symbol # in a
memoryless process entails that the probability of an edit
sequence decays exponentially with its length. More im-
portantly, the probability p(n|φ) that an edit sequence will

contain n operations must also decrease uniformly at an
exponential rate.
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In many natural processes, such as those involving com-
munication, the probability of an edit sequence does not
decrease uniformly. More probability is assigned to the me-
dium-length messages than to the very short messages. As
formulated, the memoryless transducer is unable to accu-
rately model such processes. In [26, Appendix B], we pres-
ent an alternate parameterization of the transducer without
a termination symbol. In the alternate parameterization, we
directly model the probability p(T, V) that the underlying
string contains T symbols and the surface string contains V
symbols. As a result, the probability of the length n of the
underlying edit sequence need not decrease exponentially.

The remainder of this section explains how to use the
memoryless stochastic transducer as a string-edit distance.
First we use the stochastic transducer to define two string-
edit distances: the Viterbi edit distance and the stochastic
edit distance. We show how to efficiently evaluate the joint
probability of a string pair according to a given transducer
φ. This computation is necessary to calculate the stochastic
edit distance between two strings. Next, we explain how to
optimize the parameters of a memoryless transducer on a
corpus of similar string pairs. This computation is used to
learn the primitive edit costs. Finally, we present three vari-
ants on the memoryless transducer, which lead to three
variants of the two string-edit distances. Subsequently, Sec-
tion 3 explains how to solve string classification problems
using a stochastic transducer.

2.1 Two Distances
Our interpretation of string-edit distance as a stochastic
transduction naturally leads to the following two string
distances. The first distance dv

f ¿ ¿,0 5  is defined by the most

likely transduction between the two strings, while the sec-
ond distance ds

f ¿ ¿,0 5  is defined by aggregating all transduc-

tions between the two strings.

The first transduction distance d x yv T V
f ,4 9 , which we call

the Viterbi edit distance, is the negative logarithm of the
probability of the most likely edit sequence for the string

pair <xT, yV>.

d x y p zv T V

z z x y

n
n n T Vφ ν

φ, log max
: ,

4 9 4 9J L4 9J L
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=
       (3)

This distance function is identical to the string-edit distance

dc(⋅, ⋅) where the edit costs are set to the negative logarithm
of the edit probabilities, that is, where c(z) 8 − logδ(z) for all
z ∈ E.

The second transduction distance d x ys T V
f ,4 9 , which we

call the stochastic edit distance, is the negative logarithm of

the probability of the string pair <xT, yV> according to the
transducer φ.



524 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  5,  MAY  1998

d x y p x ys T V T V
f f,4 98- log ( , | )                      (4)

This second distance differs from the first in that it consid-
ers the contribution of all ways to simultaneously generate

the two strings. If the most likely edit sequence for <xT, yV>
is significantly more likely than any of the other edit se-
quences, then the two transduction distances will be nearly
equal. However, if a given string pair has many likely gen-
eration paths, then the stochastic distance ds

f ¿ ¿,0 5  can be sig-

nificantly less than the Viterbi distance dv
f ¿ ¿,0 5 .

Unlike the classic edit distance dc(φ, φ), our two trans-
duction distances are never zero unless they are infinite for
all other string pairs. Recall that the Levenshtein distance
assigns zero cost to all identity edit operations. Therefore,
an infinite number of identity edits is less costly than even a
single insert, delete, or substitute. The only way to obtain
this property in a transduction distance is to assign zero
probability (i.e., infinite cost) to all nonidentity operations,
which would assign finite distance only to pairs of identical
strings. Note that such a transducer would still assign line-
arly increasing distance to pairs of identical strings, unlike
the Levenshtein distance.

2.2 Evaluation
Our generative model assigns probability to terminated
edit sequences and the string pairs that they yield. Each
pair of strings may be generated by many different edit
sequences. Therefore we must calculate the probability of a
pair of strings by summing the probability p(zn#|φ) over all
the terminated edit sequences that yield the given string
pair (2).

Each string pair is generated by exponentially many edit
sequences, and so it would not be feasible to evaluate the
probability of a string pair by actually summing over all its
edit sequences. The dynamic programming algorithm (Al-
gorithm 1), due to Bahl and Jelinek [2], calculates the prob-

ability p(xT, yV|φ) in O(T ⋅ V) time and space. At the end of

the computation, the αt,v entry contains the probability p(xt,

yv|φ) of the prefix pair <xt, yv> and αT,V is the probability of
the entire string pair.

ALGORITHM 1

FORWARD-EVALUATE(xT, yV, φ)
1.  α0,0 := 1;
2. For t = 0 … T
3.  For v = 0 … V

4.  if (v > 1 ∨ t > 1) [αt,v := 0;]

5.  if (v > 1) [αt,v += δ(e, yv)αt,v−1;]

6.  if (t > 1)[αt,v += δ(xt, e)αt−1,v;]

7.  if (v > 1 ∧ t > 1) [αt,v += δ(xt, yv)αt−1,v−1;]

8.  αT,V *= δ(#);
9.  return(α);

The space requirements of this algorithm may be re-
duced to O(min(T, V)) at some expense in clarity.

2.3 Estimation
Under our stochastic model of string-edit distance, the
problem of learning the edit costs reduces to the problem of
estimating the parameters of a memoryless stochastic
transducer. For this task, we employ the powerful expecta-
tion maximization (EM) framework [3], [4], [6]. An EM al-
gorithm is an iterative algorithm that maximizes the prob-
ability of the training data according to the model. See [21]
for a review. The applicability of EM to the problem of op-
timizing the parameters of a memoryless stochastic trans-
ducer was first noted by Bahl, Jelinek, and Mercer [2], [11],
although they did not publish an explicit algorithm for this
purpose.

As its name suggests, an EM algorithm consists of two
steps. In the expectation step, we accumulate the expecta-
tion of each hidden event on the training corpus. In our
case the hidden events are the edit operations used to gen-
erate the string pairs. In the maximization step, we set our
parameter values to their relative expectations on the
training corpus.

The EXPECTATION-MAXIMIZATION() algorithm (Algorithm
2) optimizes the parameters φ of a memoryless stochastic

transducer on a corpus C x y x yT V T Vn n= 1 1, , , ,K  of n

training pairs. Each iteration of our EM algorithm is guar-
anteed to either increase the probability of the training
corpus or not change the model parameters. The correct-
ness of our algorithm is shown in related work [25].

ALGORITHM 2

EXPECTATION-MAXIMIZATION(φ, C)
1.  until convergence
2.  forall z in E [γ(z) := 0;]
3.  for i = 1 to n
4.  EXPECTATION-STEP x yT Vi i, , , ,f g 14 9 ;
5.  MAXIMIZATION-STEP(φ, γ);

The γ(z) variable accumulates the expected number of
times that the edit operation z was used to generate the
string pairs in C. Convergence is achieved when the total
probability of the training corpus does not change on
consecutive iterations. In practice, we typically terminate
the algorithm when the increase in the total probability
of the training corpus falls below a fixed threshold. Al-
ternately, we might simply perform a fixed number of
iterations.

Let us now consider the details of the algorithm, begin-
ning with the expectation step. First we define our for-
ward and backward variables. The forward variable αt,v
contains the probability p(xt, yv|φ) of generating the pair
<xt, yv> of string prefixes. These values are calculated by
the FORWARD-EVALUATE() algorithm given in the preceding
section.

The BACKWARD-EVALUATE() algorithm (Algorithm 3) cal-

culates the backward values. The backward variable βt,v

contains the probability p x y t vt
T

v
V

+ +1 1, , , ,f4 9  of generating

the terminated suffix pair x yt
T

v
V

+ +1 1, . Note that β0,0 is equal

to αT,V.
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ALGORITHM 3
BACKWARD-EVALUATE(xT, yV, φ)

1.  βT,V := δ(#);
2.  for t = T … 0
3.  for v = V … 0

4.  if (v < V ∨ t < T) [βt,v := 0;]

5.  if (v < V) [βt,v += δ(e, yv+1)βt,v+1;]

6.  if (t < T) [βt,v += δ(xt+1, e)βt+1,v;]

7.  if (v < V ∧ t < T) [βt,v += δ(xt+1, yv+1)βt+1,v+1;]
8.  return(β);

Recall that γ(z) accumulates the expected number of
times the edit operation z was used to generate a given the
string pair. These values are calculated by the EXPECTATION-
STEP() algorithm (Algorithm 4), which assumes that the γ
accumulators have been properly initialized. The λ argu-
ment weights the expectation accumulation; it is used be-
low when we learn a string classifier. For the purposes of
this section, λ is always unity.

ALGORITHM 4
EXPECTATION-STEP(xT, yV, φ, γ, λ)

1.  α := FORWARD-EVALUATE(xT, yV, φ);

2.  β := BACKWARD-EVALUATE(xT, yV, φ);

3.  if (αT,V = 0) [return;]
4.  γ(#) += λ;
5.  for t = 0 … T
6.  for v = 0 … V

7.  if (t > 0) [γ(xt, e) += λαt−1,vδ(xt, e)βt,v/αT,V;]

8.  if (v > 0) [γ(e, yv) += λαt,v−1δ(e, yv)βt,v/αT,V;]
9.  if (t > 0 ∧ v > 0) [γ(xt,  yv) += λαt−1,v−1δ(xt, yv)βt,v/αT,V;]

Recall that αT,V and β0,0 both contain p(xT, yV|φ) after
lines 1 and 2, respectively. Line 7 accumulates the posterior
probability that we were in state <t − 1, v> and emitted a

<xt, e> deletion operation. Similarly, line 8 accumulates the
posterior probability that we were in state <t, v − 1> and

emitted a <e, yv> insertion operation. Line 9 accumulates
the posterior probability that we were in state <t − 1, v − 1>

and emitted a <xt, yv> substitution operation.
Given the expectations γ of our edit operations, the

MAXIMIZATION-STEP() algorithm (Algorithm 5) updates our
model parameters φ.

ALGORITHM 5
MAXIMIZATION-STEP(φ, γ)
1.  N := γ(#);
2.  forall z in E [N += γ(z);]
3.  forall z in E [δ(z) := γ(z)/N;]
4.  δ(#) := γ(#) / N;

The EXPECTATION-STEP() algorithm accumulates the ex-
pectations of edit operations by considering all possible
generation sequences. It is possible to replace this algorithm
with the VITERBI-EXPECTATION-STEP() algorithm, which ac-
cumulates the expectations of edit operations by only con-
sidering the single most likely generation sequence for a

given pair of strings. The only change to the EXPECTATION-
STEP() algorithm would be to replace the subroutine calls in
lines 1 and 2. Although such a learning algorithm is argua-
bly more appropriate to the original string-edit distance
formulation, it is less suitable in our stochastic model of
string-edit distance and so we do not pursue it here.

The EXPECTATION-MAXIMIZATION() algorithm is guaran-
teed to converge to a local maximum on a given corpus C,
by a reduction to finite growth models [25], [31]. There may
be multiple local maxima, and only one of these need be a
global maxima [26]. Our experience suggests that such local
maxima are not a limitation in practice, when the training
corpus is sufficiently large.

2.4 Three Variants
Here we briefly consider three variants of the memoryless sto-
chastic transducer. First, we explain how to reduce the number
of free parameters in the transducer, and thereby simplify the
corresponding edit cost function. Next, we propose a way to
combine different transduction distances using the technique
of finite mixture modeling. Finally, we suggest an even
stronger class of string distances that are based on stochastic
transducers with memory. A fourth variant—the generaliza-
tion to k-way transduction—appears in related work [25], [31].

2.4.1 Parameter Tying
In many applications, the edit cost function is simpler than
the one that we have been considering here. The most
widely used edit distance has only four distinct costs: the
insertion cost, the deletion cost, the identity cost, and the
substitution cost.1 Although this simplification may result
in a weaker edit distance, it has the advantage of requiring
less training data to accurately learn the edit costs. In the
statistical modeling literature, the use of such parameter
equivalence classes is dubbed parameter tying.

It is straightforward to implement arbitrary parameter
tying for memoryless stochastic transducers. Let τ(z) be
the equivalence class of the edit operation z, τ(z) ∈ 2E,
and let δ(τ(z)) = ∑z′∈τ(z)δ(z′) be the total probability assigned
to the equivalence class τ(z). After maximization, we simply
set δ(z) to be uniform within the total probability δ(τ(z))
assigned to τ(z).

δ(z) := δ(τ(z))/|τ(z)|

2.4.2 Finite Mixtures
A k-component mixture transducer φ = <A, B, µ, δ> is a lin-
ear combination of k memoryless transducers defined on
the same alphabets A and B. The mixing parameters µ form a
probability function, where µi is the probability of choosing
the ith memoryless transducer. Therefore, the total prob-
ability assigned to a pair of strings by a mixture transducer
is a weighted sum over all the component transducers.

p x y p x y A Bt v t v
i

i

k

i, , , ,f d m4 9 4 9=
=
Í

1

A mixture transducer combines the predictions of its com-
ponent transducers in a surprisingly effective way. Since

1. Bunke and Csirik [5] propose an even weaker “parametric edit dis-
tance” whose only free parameter is a single substitution cost r. The inser-
tion and deletion costs are fixed to unity while the identity cost is zero.
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the cost −logµi of selecting the ith component of a mixture
transducer is insignificant when compared to the total cost
−logp(xt, yv|φi) of the string pair according to the ith com-
ponent, the string distance defined by a mixture transducer
is effectively the minimum over the k distances defined by
its k component transducers.

Choosing the components of a mixture transducer is
more of an art than a science. One effective approach is to
combine simpler models with more complex models. We
would combine transducers with varying degrees of pa-
rameter tying, all trained on the same corpus. The mixing
parameters could be uniform, i.e., µi = 1/k, or they could
be optimized using withheld training data (cross-
estimation).

Another effective approach is to combine models trained
on different corpora. This makes the most sense if the
training corpus consists of naturally distinct sections. In this
setting, we would train a different transducer on each sec-
tion of the corpus, and then combine the resulting trans-
ducers into a mixture model. The mixing parameters could
be set to the relative sizes of the corpus sections, or they
could be optimized using withheld training data. For good
measure, we could also include a transducer that was
trained on the entire training corpus.

2.4.3 Memory
From a statistical perspective, the memoryless transducer is
quite weak because consecutive edit operations are inde-
pendent. A more powerful model—the stochastic trans-
ducer with memory—would condition the probability

d z zt t n
t
-
-14 9  of generating an edit operation zt on a finite suffix

of the edit sequence that has already been generated. Alter-
nately, we might condition the probability of an edit opera-

tion zt on (a finite suffix of) the yield ν(zt−1
) of the past edit

sequence. These stochastic transducers can be further
strengthened with state-conditional interpolation [12], [24]

or by conditioning our edit probabilities d z z st t n
t
-
-1 ,4 9  on a

hidden state s drawn from a finite state space.

3 STRING CLASSIFICATION

In the preceding section, we presented an algorithm to
automatically learn a string-edit distance from a corpus
of similar string pairs. Unfortunately, this algorithm can-
not be directly applied to solve string classification
problems. In a string classification problem, we are asked
to assign strings to a finite number of classes. To learn a
string classifier, we are presented with a corpus of la-
beled strings, not pairs of similar strings. Here we pres-
ent a stochastic solution to the string classification prob-
lem that allows us to automatically and efficiently learn
a powerful string classifier from a corpus of labeled
strings. Our approach is the stochastic analog of nearest-
neighbor techniques.

For string classification problems, we require a condi-
tional probability p(w|yv) that the string yv belongs to the
class w. This conditional may be obtained from the joint
probability p(w, yv) by a straightforward application of

Bayes’ rule: p(w|yv) = p(w, yv)/p(yv). In this section, we ex-
plain how to automatically induce a strong joint probability
model p(w, yv|L, φ) from a corpus of labeled strings, and
how to use this model to optimally classify unseen strings.

We begin by defining our model class in Section 3.1. In
Section 3.2 we explain how to use our stochastic model to
optimally classify unseen strings. Section 3.3 explains how
to estimate the model parameters from a corpus of labeled
strings.

3.1 Hidden Prototype Model
We model the joint probability p(w, yv) as the marginal of the
joint probability p(w, xt, yv) of a class w, an underlying pro-
totype xt, and an observed string yv

p w y p w x yv t v

x At

, , ,4 9 4 9=
¶ *
Í .

The prototype strings are drawn from the alphabet A while
the observed strings are drawn from the alphabet B. Next,
we model the joint probability p(w, xt, yv) as a product of
conditional probabilities,

p(w, xt, yv|φ, L) = p(w|xt, L)p(xt, yv|φ)                (5)

where the joint probability p(xt, yv|φ) of a prototype xt and a
string yv is determined by a stochastic transducer φ, and the
conditional probability p(w|xt, L) of a class w given a pro-
totype xt is determined from the probabilities p(w, xt|L) of
the labeled prototypes <w, xt> in the prototype dictionary L.
This model has only O(|L|+|A × B|) free parameters:
|L| − 1 free parameters in the lexicon model p(w, xt|L) plus
(|A| + 1)⋅(|B| + 1) − 1 free parameters in the transducer φ
over the alphabets A and B.

We considered the alternate factorization p(w, xt, yv|φ, L) =
p(yv|xt, φ) p(w, xt|L) but rejected it as being inconsistent
with the main thrust of our paper, which is the automatic
acquisition and use of joint probabilities on string pairs.
We note, however, that this alternate factorization has a
more natural generative interpretation as a giant finite
mixture model with |L| components whose mixing pa-
rameters are the probabilities p(w, xt|L) of the labeled
prototypes and whose component models are the condi-
tional probabilities p(yv|xt, φ) given by the transducer φ in
conjunction with the underlying form xt. This alternate
factorization suggests a number of extensions to the
model, such as the use of class-conditional transducers
p(yv|xt, φw) and intraclass parameter tying schemes.

3.2 Optimal Classifier
The conditional probability p(w|yV), in conjunction with an
application-specific utility function µ : W × W → ℜ, defines
a classifier

$ arg maxu u w p w yu W
V

w W

=
%&K'K

()K*K¶
¶
Í m2 7 4 9

that maximizes the expected utility of the classification,
where µ(u|w) is the utility of returning the class u when we
believe that the true class is w.

For each string yv, the minimum error rate classifier out-
puts $w
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where L(w) is the set of prototype strings for the class w. This
decision rule correctly aggregates the similarity between an
observed string and all prototypes for a given class.

3.3 Estimation

Given a prototype lexicon L : W × 2A* → [0, 1] and a corpus

C w y w yV
n

Vn= 1
1, , , ,K  of labeled strings, we estimate

the parameters of our model (5) using expectation maximi-
zation for finite mixture models [6]. If the prototype dic-
tionary is not provided, one may be constructed from the
training corpus. Our EM algorithm (Algorithm 6) will
maximize the joint probability of the corpus.

ALGORITHM 6
MIXTURE-EXPECTATION-MAXIMIZATION(φ, L, C)
1.  until convergence
2.  forall z in E [γ(z) := 0;]
3.  forall <w, xT> in L [γ(w, xT) := 0;]
4.  for i = 1 to n
5.  MIXTURE-EXPECTATION-STEP w y Li

Vi, , , ,f g4 9 ;
6.  MIXTURE-MAXIMIZATION-STEP(φ, L, γ);

Lines 2-3 initialize the γ expectation accumulators. In
practice, it is advisable to add a small constant to the γ ac-
cumulators so that no probability is optimized to zero.2

Lines 4-5 take an expectation step on every labeled string in
the training corpus. Each expectation step increments the γ
accumulators, unless p w y Li

Vi, ,f4 9  is zero. Finally, line 6

updates the model parameters in φ and L based on the ac-
cumulated expectations in γ.

The heart of the EM algorithm is the MIXTURE-
EXPECTATION-STEP() procedure (Algorithm 7).

ALGORITHM 7
MIXTURE-EXPECTATION-STEP(w, yV, φ, L, γ)
1.  Z := 0

2.  forall xT in L(w)

3.  α(xT) := L(w, xT)/L(xT);

4.  α(xT) *= FORWARD-EVALUATE(xT, yV, φ);

5.  Z += α(xT);

6.  forall xT in L(w)

7.  γ(w, xT) += α(xT)/Z;

8.  EXPECTATION-STEP(xT, yV, φ, γ, α(xT)/Z);

2. In our experiments below, we initialize γ(z) to 0 because we have suffi-
cient training data for the transducer. γ(w, xT) is initialized to 0.1 because
our prototype dictionary is at least as large as our training corpus.

Lines 1-5 accumulate the posterior probabilities p(xT|w,
yV, φ, L) for all prototypes xT ∈ L(w). p(xT|w, yV, φ, L) is the
probability that the labeled prototype <w, xT> generated the
observed string yV with known label w.

p x w y L
p w x y L

p w x y L
T V

T V

T V

x L wT

, ,
, , ,

, , ,
f

f

f
4 9 4 9

4 90 5
=

¶Í
Line 3 computes p(w|xT, L) from p(w, xt|L)/p(xt|L) while
line 4 computes p(xT, yV|φ). Next, line 7 accumulates ex-
pectations for the labeled prototypes <w, xT> in L. At the
end of the first loop, Z holds the marginal p(w, yV|φ, L).
The second loop accumulates expectations for L and φ.
Line 7 accumulates expectations for the labeled prototypes
in L, in order to reestimate the p(w, xt|L) parameters of
our lexicon. Line 8 takes a weighted expectation step for
the transducer φ on the string pair <xT, yV>. The weight
α(xT)/Z is the posterior probability p(xT|w, yV, φ, L). As a
result, this learning algorithm only trains the transducer
on similar strings.

All that remains is to provide the MIXTURE-MAXIMIZATION-
STEP() algorithm (Algorithm 8), which is straightforward.

ALGORITHM 8
MIXTURE-MAXIMIZATION-STEP(φ, L, γ)
1.  N := 0;

2.  forall <w, xt> in L [N += γ(w, xt);]

3.  forall <w, xt> in L [L(w, xt) := γ(w, xt)/N;]
4.  MAXIMIZATION-STEP(φ, γ);

Note that maximizing the joint probability p(w, yV|φ, L)
is not the same as maximizing the conditional probability
p(w|yV, φ, L). The algorithms presented here maximize the
joint probability, although they may be straightforwardly
adapted to the later objective. Unfortunately, neither objec-
tive is the same as minimizing the error rate, although they
are closely related in practice.

Our approach to string classification has the additional
virtue of being able to learn a new class from only a single
example of that class, without any retraining. We simply
add the new class w with its observed string xt into the
prototype dictionary L, and assign the new entry a prob-
ability p(w, xt|L) based on its observed frequency of oc-
currence. The old entries in the prototype dictionary have
their probabilities scaled down by 1 − p(w, xt|L), and the
memoryless transducer φ remains constant.

4 AN APPLICATION

In this section, we apply our techniques to the problem of
learning the pronunciations of words. A given word of a
natural language may be pronounced in many different
ways, depending on such factors as the dialect, the speaker,
and the linguistic environment. We describe one way of
modeling variation in the pronunciation of words. Let W be
the set of syntactic words in a language, let A be the set of
underlying phonological segments employed by the lan-
guage, and let B be the set of observed phonemes. The pro-
nouncing lexicon L : W → 2A* assigns a small set of under-
lying phonological forms to every syntactic word in the
language. Each underlying form in A* is then mapped to a
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surface form in B* by a stochastic process. Our goal is to
recognize phonetic strings, which will require us to map
each surface form to the syntactic word for which it is a
pronunciation.

We formalize this pronunciation recognition (PR) prob-
lem as follows. The input to Pronunciation Recognition is a
six-tuple <W, A, B, L, C, C′> consisting of a set W of syn-
tactic words, an alphabet A of phonological segments, an
alphabet B of phonetic segments, a pronouncing lexicon L

: W→ 2A*, a training corpus C w yV= 1
1, ,  K , ,w yn

Vn  of

labeled phonetic strings, and a testing corpus
� =C y yS Sm1 , ,K  of unlabeled phonetic strings. Each train-

ing pair w yi
Vi,  in C includes a syntactic word wi, wi ∈ W,

along with a phonetic string y BV Vi i¶ . The output is a set

of labels v1, …, vm for the phonetic strings in the testing
corpus C′.

The pronunciation recognition problem may be reduced
to the string classification problem: The syntactic words are
the classes, the underlying forms are the prototype strings,
and the surface forms are the surface strings in need of clas-
sification. So let us now apply our stochastic solution to the
Switchboard corpus of conversational speech.

4.1 Switchboard Corpus
The Switchboard corpus contains over 3 million words of
spontaneous telephone speech conversations [8]. It is con-
sidered one of the most difficult corpora for speech recog-
nition (and pronunciation recognition) because of the tre-
mendous variability of spontaneous speech. As of Summer
1996, speech-recognition technology has a word error rate
above 45 percent on the Switchboard corpus. The same
speech-recognition technology achieves a word error rate of
less than 5 percent on read speech.

Over 200,000 words of Switchboard have been manu-
ally assigned phonetic transcripts at ICSI using a proprie-
tary phonetic alphabet [9]. The Switchboard corpus also
includes a pronouncing lexicon with 71,100 entries using a
modified Pronlex phonetic alphabet (long form) [1]. In
order to make the pronouncing lexicon compatible with
the ICSI corpus of phonetic transcripts, we removed 148
entries from the lexicon and 73,068 samples from the ICSI
corpus.3 After filtering, our pronouncing lexicon had
70,952 entries for 66,284 syntactic words over an alphabet
of 42 phonemes. Our corpus had 214,310 samples—of
which 23,955 were distinct—for 9,015 syntactic words
with 43 phonemes (42 Pronlex phonemes plus a special
“silence” symbol).

4.2 Five Experiments
We conducted four sets of experiments using seven models.
In all cases, we partitioned our corpus of 214,310 samples

3. From the lexicon, we removed 148 entries whose words had unusual
punctuation ([<!.]). From the ICSI corpus, we removed 72,257 samples that
were labeled with silence, 688 samples with an empty phonetic transcript,
88 samples with a fragmentary transcript due to interruptions, 27 samples
with the undocumented symbol ?, and eight samples with the undocu-
mented symbol !. Note that the symbols ? and ! are not part of either the
ICSI phonetic alphabet or the Pronlex phonetic alphabet (long forms), and
are only used in the ICSI corpus.

9:1 into 192,879 training samples and 21,431 test samples. In
no experiment did we adapt our probability model (5) to
the test data.

Our seven models consist of Levenshtein distance [14] as
well as six variants resulting from our two interpretations
of three models.4 Our two interpretations are the stochastic
edit distance (4) and the classic edit distance (3), also called
the Viterbi edit distance. For each interpretation, we built a
tied model with only four parameters, an untied model,
and a mixture model consisting of a uniform mixture of the
tied and untied models.

The transducer parameters are initialized uniformly be-
fore training, as are the parameters of the word model
p(w|L) and the conditional lexicon model p(xt|w, L) for all
entries <w, xt> in L. Note that a uniform p(w|L) and a uni-
form p(xt|w, L) are not equivalent to a uniform p(w, xt|L)
because more frequent words tend to have more pronun-
ciations in the lexicon.

Our five sets of experiments are determined by how we
obtain our pronouncing lexicon. The first two experiments
use the Switchboard pronouncing lexicon. Experiment E1
uses the full pronouncing lexicon for all 66,284 words
while experiment E2 uses the subset of the pronouncing
lexicon for the 9,015 words in the corpus. The second two
experiments use a lexicon derived from the corpus. Ex-
periment E3 uses the training corpus only to construct the
pronouncing lexicon, while experiment E4 uses the entire
corpus—both training and testing portions—to construct
the pronouncing lexicon. The test corpus has 512 samples
whose words did not appear in the training corpus. Ex-
periment E5 merges the E1 and E3 lexicons.

The principal difference among these five experiments
is how much information the training corpus provides
about the test corpus. In order of increasing information,
we have E3 < E1,E5 < E2 < E4. In experiment E3, the pro-
nouncing lexicon is constructed from the training corpus
only and therefore E3 provides no direct information
about the test corpus. In experiment E1, the pronouncing
lexicon was constructed from the entire 3m word Switch-
board corpus, and therefore E1 provides weak knowledge
of the set of syntactic words that appear in the test corpus.
Experiment E5 combines the E1 and E3 lexicons. In ex-
periment E2, the pruned pronouncing lexicon provides
stronger knowledge of the set of syntactic words that ac-
tually appear in the test corpus, as well as their most sali-
ent phonetic forms. In experiment E4, the pronouncing
lexicon provides complete knowledge of the set of syntac-
tic words paired with their actual phonetic forms in the
test corpus.

Table 1 presents the essential characteristics of the lexi-
cons used in the five experiments.

The first four fields of the table pertain to the lexicon
alone. “Entries” is the number of entries in the lexicon,
“words” is the number of unique words in the lexicon,
“forms” is the number of unique phonetic forms in the
lexicon, and “entries/word” is the mean number of en-

4. The Levenshtein distance is the minimum number of insertions, dele-
tions, and substitutions required to transform one string into another. Thus,
the Levenshtein distance is a string-edit distance where the cost of all iden-
tity substitutions is zero and all other edit costs are unity.
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tries per word. The final two fields characterize the rela-
tion between the lexicon and the test corpus. “novel
forms” is the number of samples in the test corpus whose
phonetic forms do not appear in the lexicon, and “en-
tries/sample” is the mean number of lexical entries that
exactly match the phonetic form of a sample in the test
corpus.

For each experiment, we report the fraction of misclassi-
fied samples in the testing corpus (i.e., the word error rate).
Note that the pronouncing lexicons have many homo-

phones. Our decision rule d : B* → 2L maps each test sample

ySi  to a subset d y LSi4 9 ´  of the lexical entries. Accordingly,

we calculate the fraction of correctly classified samples as
the sum over all test samples of the ratio of the number of

correct lexical entries in d ySi4 9 to the total number of pos-

tulated lexical entries in d ySi4 9. The fraction of misclassified

samples is one minus the fraction of correctly classified
samples.

4.3 Results
Our experimental results are summarized in Table 2. Table 2
shows the word error rate for each model at the tenth EM
iteration. After training, the error rates of the transduction
distances are from one half to one sixth the error rate of the
untrained Levenshtein distance. The stochastic and Viterbi
edit distances have comparable performance. The untied
and mixed models perform better than the tied model in
experiments E1, E2, E3, and E5.

The test corpus contains 512 out-of-vocabulary samples
in the E3 experiment. If we discard these samples, then the
E3 error rate for the untied model would drop from 14.29
percent to 12.19 percent. By adding the E1 lexicon to the E3
lexicon, the error rate for the untied model drops from 14.29
percent to 12.63 percent.

The minimum error rate achievable by any decision
function on the test corpus is 7.55 percent. If the decision
function must be optimal across the entire corpus, then the
minimum error rate achievable on the test corpus is 8.65
percent.

A sparser lexicon entails a more complex mapping
between underlying forms and surface forms. The E3 and
E4 lexicons have 2.6 entries per word, while the E1 and E2
lexicons have only 1.1 entries per word. Consequently, the
inferior performance of the transducer in E1 and E2 rela-

tive to E3 and E4 is best explained by the statistical
weakness of a transducer without memory. The E1 lexi-
con has entries for 66,284 words while the E2 lexicon has
entries only for the 9,015 words that appear in the cor-
pus. As a result, a significant amount of the p(w, xt|L)
probability mass is assigned to words that do not appear
in either the training or testing data in experiment E1.
This accounts for the relative performance of the trans-
ducer in E1 and E2.

In experiment E4, the lexicon contains an entry for
every sample in the test corpus. Since the Levenshtein
distance between a surface form (in the test corpus) and
an underlying form (in the lexicon) is minimized when the
two forms are identical, we might expect the Levenshtein
distance to achieve a perfect 0 percent error rate in ex-
periment E4, instead of its actual 56.35 percent error rate.
The poor performance of the Levenshtein distance in ex-
periment E4 is due to the fact that the mapping from pho-
netic forms to syntactic words is many-to-many in the E4
lexicon. Each phonetic form in the test corpus appears in
10.027 entries in the E4 lexicon, on average. The most am-
biguous phonetic form in the test corpus, “ah,” appears
528 times in the test corpus and exactly matches entries
for the following 62 words in the E4 lexicon.

a a_ all an and are at by bye don’t for gaw have her high
hm huh I I’ll I’m I’ve I_ in it know little my no of oh
old on or other ought our out pay see so that the them then
there they those though to too uh uhhuh um up us was we’ve
what who would yeah you

The great ambiguity of “ah” is due to transcription er-
rors, segmentation errors, and the tremendous variability of
spontaneous conversational speech.

We believe that the superior performance of our statisti-
cal techniques in experiments E3 and E5, when compared
to experiments E1 and E2, has two significant implications.
Firstly, it raises the possibility of obsoleting the costly proc-
ess of making a pronouncing lexicon by hand. A pro-
nouncing lexicon that is constructed directly from actual
pronunciations offers the possibility of better performance
than one constructed in traditional ways. Secondly, it sug-
gests that our approach may be able to accurately recognize
the pronunciation of a new word from only a single example
of the new word’s pronunciation, without any retraining.

4.4 Credit Assignment
Recall that our joint probability model p(w, xt, yv|φ, L) is con-
structed from three separate models: The conditional prob-

TABLE 1
ESSENTIAL CHARACTERISTICS OF THE LEXICONS USED IN THE

FIVE EXPERIMENTS

TABLE 2
EXPERIMENTAL RESULTS
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ability p(w|xt, L) is given by the word model p(w|L) and
the lexical entry model p(xt|w, L), while the joint probabil-
ity p(xt, yv|φ) is given by the transducer φ. Our training
paradigm simultaneously optimizes the parameters of all
three models on the training corpus. In order to better un-
derstand the contribution of each model to the overall suc-
cess of our joint model, we repeated our experiments while
alternately holding the word and lexical entry models fixed.
In all experiments the word model p(w|L) and the lexical
entry model p(xt|w, L) are initialized uniformly. Our results
are presented in Tables 3-6 and summarized in Fig. 1.

For experiment E1, a uniform word model severely re-
duces recognition performance. We believe this is because
57,269 of the 66,284 the words in the E1 lexicon (84.4 per-
cent) do not appear in either the training or testing corpora.
Adapting the word model reduces the effective size of the
lexicon to the 8,570 words that appear in the training cor-
pora, which significantly improves performance.

For experiments E1 and E2, adapting the lexical entry
model has almost no effect, simply because the average
number of entries per word is 1.07 in the E1 and E2 lexicons.

For experiments E3 and E4, adapting the word model
alone is only slightly more effective than adapting the lexi-
cal entry model alone. Adapting either model alone reduces
the error rate by nearly one-half when compared to keeping
both models fixed. In contrast, adapting both models to-
gether reduces the error rate by one-fifth to one-sixth when
compared to keeping both models fixed. Thus, there is a
surprising synergy to adapting both models together: The
improvement is substantially larger than one might expect
from the improvement obtained from adapting the models
separately.

Current speech-recognition technology typically em-
ploys a sparse pronouncing lexicon of hand-crafted un-
derlying forms and imposes a uniform distribution on the
underlying pronunciations given the words. When the
vocabulary is large or contains many proper nouns, then
the pronouncing lexicon may be generated by a text-to-
speech system [22]. Our results suggest that a significant
performance improvement is possible by employing a
richer pronouncing lexicon, constructed directly from ob-
served pronunciations, along with an adapted lexical en-
try model.

This tentative conclusion is supported by Riley and Ljolje
[23], who show an improvement in speech recognizer per-
formance by employing a richer pronunciation model than is

TABLE 3

TABLE 4

TABLE 5

TABLE 6

Fig. 1. Word error rate of the stochastic edit distance in five experi-
ments for four different adaption schemes. Adapting p(w) improves
performance in all five experiments. Adapting p(xt|w) improves per-
formance in experiments E3-E5, but not in E1 and E2. Adapting p(w)
and p(xt|w) together yields an unexpectedly large improvement in ex-
periments E3 and E4, when compared to the improvement obtained by
adapting each separately. The vertical line (“lower bound”) is the mini-
mum error rate achievable on the test corpus by any decision function
that is optimal across the entire corpus (8.65 percent).
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customary. Our approach differs from their approach in
three important ways. Firstly, our underlying pronouncing
lexicon is constructed directly from the observed pronun-
ciations, without any human intervention, while their un-
derlying lexicon is obtained from a hand-built text-to-
speech system. Secondly, our probability model p(yv|w)
assigns nonzero probability to infinitely many surface
forms, while their “network” probability model assigns
nonzero probability to only finitely many surface forms.
Thirdly, our use of the underlying form xt as a hidden vari-
able means that our model can represent arbitrary (nonlo-
cal) dependencies in the surface forms, which their prob-
ability model cannot.

5 CONCLUSION

We explain how to automatically learn a string distance
directly from a corpus containing pairs of similar strings.
We also explain how to automatically learn a string classi-
fier from a corpus of labeled strings. We demonstrate the
efficacy of our techniques by correctly recognizing over 87
percent of the unseen pronunciations of syntactic words in
conversational speech, which is within 4 percent of the
maximum success rate achievable by any classifier. The
success of our approach on this difficult problem argues
strongly for the use of stochastic models in pattern recogni-
tion systems.
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