
Journal of Network and Systems Management, Vol. 5, No. 3, 1997

1064-7570/97/0900-0351$12.50 / 0 Ó 19 97 Plenum Publishing Corporation

351

The Role of Multicasting in Managing Interactive

Multimedia Distance Learning Systems

H. Abdel-Wahab,1,2 K. Maly,1 E. Stoica,1 and A. Youssef1

This paper discusses the important role of multicastin g in designing, implementing,

and managing interactive multimedia distance learning systems. This is achieved in

the context of IRI, an Interactive Remote Instruction system for distance learning

built at Old Dominion University. IRI is an Internet-based system which integrates

continuous multimedia, shared applications and a variety of multi-user collaborative

utilities. In this paper, w e concentrate on the process architecture and dynamic

multicast group handling as they pertain to managin g multimedia resources, and show

how they support robustness and short response time to user actions. IRI uses raw

IP multicastin g for audio and video streams and reliable multicasting for resource

management and data sharing. The system is scalable (uses multicast for inter-process

communication) and expandable (partition ed into a set of autonomous but cooperating

components).

KEY WORDS: Multimedia resource managemen t; distance learning; multicastin g;

distributed systems; virtual classroom.

1. INTRODUCTION

Over the past two years, the department of computer science at Old Domin-

ion University has developed IRI (Interactive Remote Instruction) which melds

video, networking, and computing technologies [1± 3]. IRIs goal is to enable new

educational possibilities by providing each student with a learning environment

supporting multimedia interaction (video, audio, data sharing), tools for presen-

tations, surveys, evaluation, homework, exercises, multimedia note-taking and

annotations, recording/ playback of classes, personal review sessions and study

groups. We have integrated video and audio into a complex, highly interactive

1Departmen t of Computer Science, Old Dominion University, Norfolk, Virginia 23529. E-mail:

{wahab, maly, stoic e, youssef}@cs.odu.edu
2Correspondence should be directed to H. Abdel-W ahab.

Abdel-Waha b, Maly, Stoica, and You ssef352

remote instruction system which uses the Internet technology as a vehicle for

communication.

Through the use of computers, high-speed networks, standard software

(UNIX, Motif, Internet IP) IRI creates a virtual classroom where a student can be

at home, in of® ce, or in a remote classroom, yet participate fully. The teacher’ s

image is displayed on the screen all the time. Every student hears the teacher’ s

voice. If the teacher asks a student a question, or if a student needs attention, the

image of that student is also presented. In addition, since the virtual classroom

may consist of several rooms (sites), a wide angle view of each classroom (one

at a time) is also displayed. The teacher can speak at any time. Students share a

group of audio channels, each controlled by a token, and only the students with

the token can speak. The participants can also share X applications (tools). For

example, the teacher may present his notes using Netscape. Any student can take

control of the tool while the others observe. Only the person who has the token,

can interact with the tool. IRI allows students to take notes of a presentation,

play back a presentation at a later time, see other students regardless of location,

ask questions, and make presentations. Although in the previous discourse we

used the term teacher, our system is built such that any person can take on this

role. For example, a student while making a presentation becomes the ª teacherº .

Designing IRI, we faced problems in making this system usable by non-

computer science people (e.g., history majors), scalable (to 100 users) and robust.

We designed an interface that hides all implementation details from the user.

Moreover, all interface-related modules are included in a separate process, thus

providing short response time to user actions. We use reliable and unreliable mul-

ticast communication between processes on different machines. Thus, IRI can

support any number of users. To provide robustness to our system, we imple-

mented each functionality in a separate process. In this way, one failure does

not cause failure in other subsystem parts.

In this paper we focus on the process architecture and dynamic multicast

group handling as they pertain to the management of multimedia resources.

Section 2 is an overview of IRIs software architecture. Section 3 is a com-

prehensive discussion of IRIs inter-process communication. Section 4 gives the

description of the Class Information Manager (CIM). Section 5 deals with man-

aging IRIs shared resources. Section 6 discusses the video and audio subsys-

tems with emphasis on the dynamic multicast group handling. Section 7 gives

an overview of IRIs tool sharing engine and Section 8 contains our conclusions.

2. SYSTEM SOFTWARE ARCHITECTURE

Figure 1 shows the multimedia software architecture of IRI. The IRI system

is composed of two major components: the Class Information Manager (CIM)

and the Remote Instruction Server (RIS). There is only one CIM for the entire

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 353

Fig. 1. System architecture.

IRI system and there is one RIS for each participant. The CIM system is the

heart of IRI that glues everything together. It assigns unique IDs to classes and

participants and maintains the attendance lists of all on-going classes.

RIS consists of several autonomous processes that use UNIX-domain sock-

ets [4] for communication within the same host. On different machines, processes

communicate using raw IP multicasting and the reliable multicast protocol RMP,

developed at UC-Berkeley/ West Virginia University [5]. RIS has the following

set of processes: Session (Sess), X Tools sharing (XTV), Audio (Aud), Video cap-

ture (VidSend), Video student receiver (VidSt), Teacher video receiver (VidTr),

Class video receiver (VidSite), Reliable Multicast Protocol Server (RMPS) and

Notepad (NPad).

Abdel-Waha b, Maly, Stoica, and You ssef354

The Session process manages the class, multimedia resources, and the IRI

interface. It also creates and initializes all the other processes.

The X Tools sharing process allows sharing X applications between teacher

and students. The application usually runs at the teacher machine but can be

run on any accessible machine. XTV intercepts X application requests and sends

them to the local X server and to the students’ X servers [6, 7]. The interaction

with the application is controlled by a token. Only the person that has the token

(token holder) can interact with the tool (this can be the teacher or any one of

the students).

The Audio process handles voice data. In IRI there are several audio chan-

nels. One is reserved for the teacher to speak at any time, and the others are to

be shared by all students. Since workstations may be in different rooms, in each

room one machine is designated to play out the teacher’ s voice and the speaking

students’ voices using a software audio-mixing technique.

The Video processes capture and display the teacher’ s, students’ and the

classrooms’ images. The VidSend process captures and sends the image of the

teacher (at a rate of 30 frames/ sec) or a student (a rate of 10 frames/ second).

The VidTr process displays the teacher’ s image in a 640*480 window if no X

application is running and shifts the image into a 320*28 0 window if an X

application is started. A VidSt process receives a student image and displays

it on the screen in a 320*280 window. At one moment, images of two students

can be displayed. Each room has a workstation designated to capture a general

image of that site. On this machine runs another VidSend process that captures

the image of the site at a rate of 5 frames/ sec. The VidSite process receives

and displays a site image in a 320*20 0 window. The architecture also allows

to monitor network conditions and adjust the frame rate of individual video

streams.

The RMPS process uses the services provided by the RMP protocol for reli-

able multicast. Whenever the Sess, XTV or NPad process want to communicate

with their counterpart on another workstation, they deliver the data to the RMPS

module. This multicasts to the RMPS modules running on all stations, which in

turn deliver the data locally to the destination processes.

The Notepad process provides students with the utility of taking notes dur-

ing the class. Any window on the screen can be snapped and introduced in a page

on the notepad. The Notepad is used here only as an illustration for IRI utilities

which support the learning environment: Presentation tool, Instant survey, and

Lesson planner [2] .

3. IRI INTERPROCESS COMMUNICATIONS

Each process inside IRI has a well de® ned and expandable interface for

communication. We have the following naming convention for messages and

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 35 5

functions. If a process X sends message M to a process Y, the message is

given the name X to Y M. In process X the function to send the message is

called ToY M, and in process Y the function to receive the message is called

FromX M. Thus, IRI can be completely de® ned by listing all messages and their

associated functions.

3.1. UNIX Domain Protocols

As shown in Fig. 1, CIM is composed of two processes while RIS has sev-

eral processes. Processes within CIM or within the same RIS communicate with

each other using UNIX Domain Protocols [4]. The UNIX domain protocols are

often twice as fast as TCP/ IP since the data never leave the host and, therefore,

no checksum or sequence numbers are needed to guard against data corruption,

data loss, or out of order arrival.

More important to application programmers is that the API (Application

Program Interface) of the UNIX domain is almost identical to the popular TCP

and UDP sockets. While other forms of IPC (e.g., shared memory) are univer-

sally considered more ef® cient than the UNIX domain protocols, they usually

use completely different APIs which do not interact nicely with other forms of

I/ O [4]. In Berkeley-derived UNIX, a pipe is implemented as a UNIX socket

pair. In the X window system if an X client determines that the X server is

located in the same host as itself, a UNIX domain socket is used instead of a

TCP socket.

3.2. The Reliable Multicast Protocol

RMP was developed to provide reliable multicasting over the Internet. We

have adopted RMP as the basis for inter-site communications between processes

that need reliable data transmission (e.g., X protocol data). In IRI three types of

traf® c need reliable communication:

T1: one-to-many, e.g., the output (requests) of a shared X application (tool) to

the X servers of all participants.

T2: many-to-one, e.g., the input (events) to a shared X tool from the X servers

of all participants.

T3: one-to-one, e.g., a teacher having a private conversation with a student.

RMP is ideal for type T1 traf® c. For example, IRI creates a multicast group

called XTV-group and each student joins this group. Any message sent to XTV-

group will be received by all members of the group.

TCP connection is ideal for type T2 traf® c. However, for the reasons

explained in section 2 (scalability), we use RMP to carry T2 type traf® c, by cre-

ating a multicast group called TeacherGroup. The only member of the Teacher-

Abdel-Waha b, Maly, Stoica, and You ssef356

Group is the teacher. Each student may send messages to this group without

being member of it.

To handle the third type of traf® c T3, we may consider one of the following

three options:

Option 1. The teacher uses a multicast group G to send a message and

explicitly specify that the message is intended for a speci® c student. All other

students should ignore the message.

The disadvantage of this option is clearly the overhead involved in send-

ing the message to all students since all but one will ignore it. This option is

appropriate if the teacher intends to send few messages to one student.

Option 2. The teacher uses a multicast group G to inform a speci® c student

to join another private multicast group P. The teacher also joins P and therefore

both the teacher and the student use P for their private conversation.

The advantage of this option is that it can be generalized for ª side chattingº

between any subset of participants, not just two. A participant may create and

join a private multicast group P and use the public multicast group G to inform

a subset of the participants to join P.

Option 3. The teacher uses the public multicast group G to inform a speci® c

student to ª call backº and establish a TCP connection to use for their private

conversation.

This is a more ef® cient than Option 2 if only two parties are involved in a

private one-to-one conversation.

To conveniently use the services provided by the RMP library, we have

implemented an RMP Server (RMPS). As an example, an XTV process may

ª joinº an RMP multicast group G by sending join request to RMPS. The con-

vention used to name an RMP group G is X.cs.odu.edu where X has the syntax

á process name ñ grp á Class ID ñ . For example, all XTV processes of a class whose

ClassID is 5 should join the RMP group: XTVgrp5.cs.od u.edu. The Class ID is

a unique number assigned by the CIM upon the start of each class.

For each UNIX connection, RMPS creates a thread to handle the connec-

tion. The messages exchanged between a process P and an RMPS thread D are:

Join group. P asks D to join group G.

Leave gro up. P asks D to leave group G and close the UNIX connection.

Send message. P sends message to group G.

Receive message. D delivers a message to P that was sent by a process to group

G.

List members request/ reply. P sends a request to D for listing the members of

group G. D replies by sending the required list.

Member left. D informs P whenever a member of group G leaves.

Slowdown. D informs P to slow down and stop sending messages because of a

transient congestion.

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 357

Speedup. D informs P to resume sending after, say, a congestion condition is

resolved.

3.3. UDP Multicasting

Because of the overhead involved in using RMP, we use UDP multicasting

for sending continuous media streams. To choose IP multicast group addresses

and port numbers we follow a scheme derived from Ref. [8]. Each group type

(e.g., VidTrGrp used for teacher video) is assigned a unique number n (e.g.,

VidTrGrp used for teacher video is assigned a number n = 1). A speci® c group

N? is mapped to an IP multicast group G according to the following formula:

G = 224.A.B.C : P

where A.B.C.D is the CIM host IP number and P is the UDP port calculated

according to the following formula:

P = 40, 000 + ((? ± 1) * 30) mod 10, 000 + n

Where ? is the unique Class Id assigned by CIM upon the start of a class. Here we

assume that each class may have at most 30 IP multicast groups. The number

10,000 is to ensure that P will not exceed the range of port numbers (about

50,000 on most implementations).

4. THE CLASS INFORMATION MANAGER (CIM)

Figure 2 shows the major data structures of CIM. The CIM maintains a table

of ClassInfo. Each entry in this table represents either a regularly offered course

or a temporary study group. A ª courseº is a static entity that represents a course

to be offered as an IRI course. Normally the information about IRI courses are

inserted into the table at the beginning of each semester and usually are deleted

at the end of the semester. Therefore the course information is considered to be

long lived. For example, in Fig. 2, the ClassInfo table contains two courses CS

476 and CS 250. Each course has a set of ® xed attributes such as the course

number, the course title and teacher information. For example, the ® rst entry is

for CS476Ð Systems Programming which is taught by Dr. Wahab.

Besides regularly offered courses, students (either only by themselves or

with the help of a teaching assistant or a teacher) may form IRI ª study groupsº .

From the CIM point of view, a study group is considered to be a ª temporaryº

course that exits only as long as there is at least one active participant and is

deleted as soon as the last participant leaves the study group. In contrast to the

regular course information, a study group information is considered short lived.

Abdel-Waha b, Maly, Stoica, and You ssef358

Fig. 2. CIM data structures.

In Fig. 2, the ClassInfo table has one study group called TempGroup1 for course

CS476 and it has been started by a participant whose name is Arvind. In CIM, we

deal with a study group exactly like a regular class except that the information

about the group is deleted at the end.

Each class or study group is assigned a unique identi® er called ClassID. In

Fig. 2, the variable ClassIDCounter keeps track of the last assigned class num-

bers. The value of this variable ranges from 1 to 10,000 (this value is practically

a very large number since it is unlikely to have 10,000 simultaneously active

classes and study groups at any given university). In Fig. 2, course CS 476 is

an active ongoing class whose ClassID is 1 while the study group TempGroup1

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 359

has a ClassID of 2. However, the ClassID of course CS 250 is 0 since there is

no class held for this course at this instant of time. The classID is used as the

basis for creating unique multicast groups within the IRI system.

In addition to unique ClassIDs, CIM assigns to each IRI class room a unique

site ID and a set of Subnet addresses. For example, at this time, IRI have two

class rooms, one is located in the main campus in Norfolk while the other is

located 15 miles away in Virginia beach. The information about these two sites

is shown in a table called SiteIDs in Fig. 2. The Norfolk site (odu) is assigned

SiteID 1 and its subnet IP number is 128.82.7 while the Virginia Beach site

(VaBeach) is assigned SiteID 2 and its subnet IP number is 128.82.8 . It is easy

to identify the site of each participant from the IP address of his/ her workstation.

For example, in our current con® guration, all workstations at the odu site have

an IP address of the form 128.82.7 .X and all workstations at the VaBeach site

have an IP address of the form 128.82.8 .X. The information in the table SiteIDs

is also long lived since it rarely undergoes any changes. For example, a new

record is added in this table whenever a new IRI class room is operational, an

event that occurs infrequently, e.g., every few months.

The last type of information kept by the CIM is the attendants (participants)

list for each class. Each attendee (or participant) is identi® ed by a unique ID

(StID) within the class. In each class or study group there is a counter called

StIDcounter that keeps track of the last assigned StId. The participants of each

class are kept together in a linked list of AttendInfo records. Each AttendInfo

record contains vital information about each participant such as login, Name,

workstation IP address, site ID and StID. In Fig. 2, the class CS 476 has two

students: youssef (StId is 1 and is located at odu site) and stoic e (StID 2 and is

located at VaBeach site). Note that CS 250 currently has no active classes and

therefore its ClassID is 0, its StIDcounter is 0 and its AttendPtr is NIL.

CIM always saves the changes made to its data structure in a stable stor-

age. If for any reason, the CIM process is abnormally terminated, any new Sess

process will detect this failure and will try to restart the CIM process. When the

CIM process restarts after failure, it recovers the contents of the data structures

from the disk ® les and veri® es that the information it has is still current by con-

tacting the RMPS. This is achieved by reconciling the differences between the

data structures information and the RMPS information concerning the current

multicast groups and their members.

5. MANAGING MULTIMEDIA RESOURCES

We de® ne an exclusive multimedia resource to be a resource that can be

held and used by at most one participant at a time. Each resource is associated

with a token. Only the participant that has the token can use the resource. The

following is a list of the exclusive multimedia resources mostly used in IRI:

Abdel-Waha b, Maly, Stoica, and You ssef360

Input to Shared Tools (ToolToken). Allows a participant to manipulate and

provide input to the shared tools.

For simplicity, we have a single token for all tools. This is in contrast to

XTV [6, 7], where each tool has its own token and thus a participant may control

a subset of the X tools. From our experience in both XTV and IRI, the policy

of allowing different users to simultaneously control different subsets of tools

can be confusing and dif® cult to manage.

Global Pointer Control (PointerToken): Allows a participant to move the

global pointer across the windows of the shared tools.

Student Audio Channel (AudioToken): Allows a student to speak and be

heard by all class participants.

Student Video Channel (VideoToken): Allows a student video to be cap-

tured and sent to all class participants.

Center of Attention (AttentionToken): this token combines the Audio-

Token and VideoToken to allow the student to be the center of attention. This

type of resource is considered to be a logical rather than a physical resource

(like Video and Audio).

Publ ic NotePad (NPadToken): Allows a participant to show his/ her

notepad to other participants.

C reate Tools (CreateToolsToken): Allows a participant to run new tools

locally and remotely. Usually the teacher retains this token, and it is rarely given

to students.

5.1. Management of Exclusive Resources

The problem addressed here is how to manage and control access to the

exclusive resources of IRI. Associated with each resource is a token and a partic-

ipant must ® rst obtain and hold the token before he/ she can access the resource.

Most earlier implementations of exclusive resource management are based on

centralized server architecture [6, 9]. Here, we present a new implementation in

which the central server functions are distributed among all participants. Hence,

there is no single point of failure or bottleneck which results in a more robust

and responsive system. In our algorithm, we rely on the fact that the transport

layer (RMPS) has an implementation of reliable multicasting where a message

sent by one participant is guaranteed to be received by all other participants.

5.1.1. Classi® cation

Resources have types and each resource type has one or more units.

Resources are classi® ed into two categories: primitive and composite. A prim-

itive resource is atomic in the sense that it is not composed of other resources

while a composite resource consists of a set of two or more primitive resources.

In multimedia collaborative applications, some participants have distinguished

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 361

roles. For example, in a desktop conferencing system such as XTV [6] one par-

ticipant is designated as the conference chairperson and in a distance learning

system such as IRI one of the participants is designated as the teacher and the

rest of participants are students.

Shared Tools, Global Pointer, and Slide Tool, are examples of IRIs primitive

resources. Each of these types has one unit. Audio Channels and Video Channels

are also primitive resources, but each of these types has multiple units.

Examples of IRIs composite resources are the Center of Attention resource

which has multiple units, each composed of an audio and a video channel, and

the Presenter resource which has only one unit and is composed of slide tool,

global pointer, an audio and a video channel.

5.1.2. Access Permissions

If a participant wants to speak, ideally he/ she should be able to start speak-

ing right away without ® rst asking for permission to speak or wait for the avail-

ability of an audio channel. However, if a participant X wants to manipulate a

shared application, like a spread sheet, which is being manipulated by some other

participant Y, then it is appropriate to get the following permissions before this

switch from Y to X is completed. First, X should ask the coordinator (e.g., con-

ference chairperson or the class teacher) for permission to manipulate the shared

application. If the coordinator approves X’s request, then Y may be asked to stop

what he/ she is doing and be prepared to relinquish control of the shared appli-

cation. Even when Y signals his readiness to pass the token, we may still have

to wait for the shared application itself to reach a ª consistentº state before giv-

ing the control to X. This scenario, depicts that some resources may require the

approval of three entities before granting them: the coordinator (c), the current

resource holder (h) and the switched resource itself (r).

Based on this brief discussion, we associate with each resource type three

permission bits, if one bit is set then the corresponding permission must be

obtained before a unit of this resource type can be granted. In representing

these permissions we use notations similar to that used to represent ® le per-

missions in UNIX, where a ® le may have three primitive permissions (rwx) for

read/ write/ execute. We use (chr) for coordinator/ holder/ resource. For example,

(-h-) means that only the holder permission is required and (ch-) means that both

the coordinator and the holder permissions are required.

5.1.3. RMP Messages

We use only two RMP messages, one to request the resource and the other to

grant the resource. We assume each user has a unique identi® er (called UID) and

each participant maintains a list of all other participants UIDs. The RMP message

RequestResource is sent by the participant requesting the resource. The message

has four arguments: the sender’s UID, the requested resource ID, the Rsrv ® eld

(for dealing with composite resources as will be discussed later) and the resource

Abdel-Waha b, Maly, Stoica, and You ssef362

permission bits. The current resource holder process responds to this request,

after the needed permissions have been obtained, by sending a GrantResource

message which has three arguments: the new holder’ s UID, the granted resource

RID and the Rsrv ® eld.

5.1.4. Free Resource Holder

One of the participant’s processes, called the free resource holder, keeps

the resource if no one else needs it. We refer to the UID of this participants as

the FreeID. FreeID is always chosen to be the lowest UID of the current active

participants. In order to distinguish between the FreeID and the actual participant

having the same UID, the FreeID is preceeded by a minus sign. Thus if the

lowest UID is 14, the FreeID is ± 14. Note that granting a resource to FreeID is

equivalent to freeing the resource. Each participant can always compute the value

of FreeID since we assume each has an updated list of the current participants. It

is important to note that the FreeID is not tied to any particular participant, but

it is assigned to the lowest numbered UID among the current participants. Thus

if the current FreeID leaves the conference, a new FreeID takes over, and if a

new participant joins the conference with a lower UID than the current FreeID,

then that new participant takes over and becomes the new FreeID.

5.1.5. Requesting/ Granting Composite Resources

The Rsrv (reserve) ® eld of the message is used for dealing with composite

resources. Assume a user is granted a composite resource unit with RID r and

assume the composite resource consists of the primitive resources r1 , r2 , . . . ,

rn . To get one unit of each primitive resource, they should be collected, one-

by-one, and none of the collected units should be released until the composite

resource itself is released. In such case, the primitive resources obtained as part

of a composite resource should be reserved and should not be available for real-

location until the composite resource is freed. The Rsrv ® eld of the messages

requesting and granting units of r1, r2 , . . ., rn should have the value r , indicat-

ing that this unit is reserved to be part of the composite resource r. If the value

of Rsrv ® eld is zero, then the resource unit is being allocated as a stand-alone

primitive resource unit. Thus if a process notices that the Rsrv ® eld of a grant

message is non-zero, it marks the resource unit as reserved and should refrain

from requesting these units as if they do not exist.

Accordingly, each resource unit has one of three states: free, used, and

reserved. Both free and used resource units can be granted to users according

to the resource permission bits. However reserved units can not be requested or

granted by any process. If the composite resource r is being used by one user A,

then switching r to another user B implies that all the components of r should

be granted to B as reserved units. On the other hand, if r is freed by A (by grant-

ing it to FreeID), then its primitive units should be freed as well. Therefore, a

composite resource is ª assembledº with reservations if it is granted to user A

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 363

by FreeID, is ª dismantledº when it is granted to FreeID, and is ª preservedº if

it is switched from one user A to another user B.

6. AUDIO AND VIDEO RESOURCES

It became most obvious that two features are crucial in a computer based

learning paradigm: responsiveness and robustness. Responsiveness means both

performance and ease of use. Robustness means that the failure of one system

part should not affect the others. In this section, we will describe the services

provided by the audio and video processes to support these requirements.

6.1. Audio

As mentioned earlier, the teacher can speak at any time. The teacher’ s voice

is sent to the AudTr Grp? multicast group. The symbol ª ?º stands for ClassID,

which is a unique identi® er for an IRI session. Since in each room, only one

workstation plays the teacher’ s voice, at most one Aud process per site joins

this group. At the teacher’ s site, no Aud process joins AudTr Grp? since students

can hear the teacher without a speaker. Students share together a group of audio

channels, each controlled by a token. Thus, only students who have audio tokens

can speak. The student’s voice is sent to the multicast group AudStXGrp?, X =
1 . . ., Naud, where Naud is the number of audio channels available to students.

As for the teacher, at most one workstation plays the student voice and thus one

Aud process per site joins this group. The number of audio channels should be

suf® cient in order not to block any student who wants to speak. Each room has

a workstation designated to play the voice coming from all the audio multicast

groups, using a software mixing technique.

6.2. Video

The video subsystem has the task of displaying multiple video streams. As

presented in Section 2, it consists of the following processes: VidSend, VidTr,

VidStX, VidSite. The VidSend process captures a video image from a local cam-

era. This image can be a teacher’ s image or a student’s image. The teacher’ s

image is sent to VidTrG rp? multicast group. Each VidTr process joins the VidTr-

G rp? and thus receives the teacher’ s image and displays it in a window. As

mentioned earlier, if a student is at the local workstation, VidSend captures the

image of the student and sends to one VidStXGrp?, X = 1 . . ., Nvi d, where Nvi d

is the number of student video channels. The processing time for decompression

and display of a frame limits us to display the image of only two students at a

time. The image of the ® rst student will be multicasted to VidSt1G rp? and the

image of the second student will be multicasted to the VidSt2G rp?. The VidStX

Abdel-Waha b, Maly, Stoica, and You ssef364

process, X = 1, . . ., Nvi d, joins the VidStXGrp?, receives the image and displays

it in a window. On each workstation, there is one VidStX process for each mul-

ticast group VidStXGrp?. In each room, there is a designated workstation where

an additional VidSend process runs. This machine has a supplementary video

board attached to a camera that captures a general image of the site. This image

is sent to the VidSiteXGrp?, X = 1 . . . Nsite , where Nsite is the number of sites.

The VidSite process receives and displays the frames in a window. VidSite joins

only one of the multicast groups VidSiteXGrp?. Thus, at any instant in time, all

the students and the teacher will have the image of the same site on the screen.

The teacher can change the image to display another site. In this case, the Vid-

Site processes will join another multicast group and will display the other site

image.

During the class, the teacher’ s image may be shifted from a big window

(640*480), when no tool is running, to a small window (320*24 0), when an X

application is started. We apply this also in the case of a student making a pre-

sentation, where he switches the role with the teacher. The VidTr processes will

receive a message from the Sess process, which causes the teacher’ s image to

be displayed in the smaller (320*24 0) window. The VidStX processes that dis-

plays the presenter’ s image, will receive another message, from the Sess process,

which causes the student’s image to be displayed in the 640*480 window.

7. THE TOOL SHARING ENGINE

The tool sharing in IRI is handed by the XTV process as shown in Fig. 1.

Although XTV [6, 7] is a general purpose collaborative system designed to share

X applications in a desktop conferencing environment, we retain the name XTV

in IRI to refer to those parts that handle the mechanics of sharing X tools.

In XTV, a token is used to coordinate control of shared tools. Without this

control, shared tools may reach inconsistent states and crash. Only the participant

with the token is allowed to change the state of the tools. In XTV, a tool may

be created locally on the same machine where the XTV process of the teacher is

running or remotely on any other machine. In either local or remote execution

of a tool, whenever the tool establishes a TCP connection with the teacher XTV,

the teacher XTV sends an RMP message to all other XTV processes to add a new

tool structure. The new tool structure will contain all the information needed for

traf® c translation between the local and teacher displays. See Ref. [7] for details

of this translation.

Since the tools are connected to the teacher’ s XTV process, all tool requests

are intercepted by this process and sent to all X servers. The events generated

by an X server are sent to the teacher’ s XTV only if the participant has the tools

token or the event is an expose event [10]. We always let the expose events to

be sent immediately to the tools, otherwise some participants may have to wait

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 365

long times to refresh their display windows. The teacher’ s XTV process forwards

the received events to the tool based on the assumption that at most one of the

participants has the tools token. Every XTV process checks to see if it has the

tool token before forwarding any packets to the teacher’ s XTV.

8. CONCLUSIONS

The advent of digital technology to support interactive, multimedia virtual

classrooms at multiple, distant locations is an important step in solving the prob-

lems of delivering education and training ef® ciently and effectively to students

who are bound to speci® c locations by jobs or lack of travel and relocation funds.

IRI is a system which implements a virtual classroom to support such a distance

learning environment. IRI is an open architecture with a speci® cation of its ser-

vices and communication protocols available; the multimedia subsystem and its

impact on the new learning paradigm were the driving force behind the design of

the IRI system and lead directly to the process structure described in this paper.

To manage such large and complex distributed multimedia system effec-

tively, we implemented each functionality into a separate process. In this way,

one failure does not cause failure in other subsystem parts. We use reliable and

unreliable multicast communication between processes on different machines.

Thus, IRI can support any number of users.

In IRI, multicasting is not only used for performance reasons, but is also

used for management of the multimedia resources. The ability for any process

to join and leave any multicast group proved to be one of the most valuable

and powerful feature of IGMP (Internet Group Management Protocol) [11]. For

example, each remote site in IRI has a process that takes the class video and

sends it to the multicast group assigned to that site. Then, a process that receives

a remote site video can be instructed to display the images of any desired site

by simply joining the corresponding multicast group of that site.

In addition, we have described a distributed algorithm to manage and con-

trol exclusive resources among IRI participants. The algorithm is based on RMP,

an implementation of reliable multicasting, in which every message sent by one

participant is guaranteed to be received by all other participants.

ACKNOWLEDGMENT

This work is supported by grants from NSF, Sun Microsystems and Cox

Communications.

REFERENCES

1. K. Maly, H. Abdel-W ahab, C. M. Overstreet, A. K. Gupta, Mauthu Kumar, and Rahul Srivat-

Abdel-Waha b, Maly, Stoica, and You ssef366

sava, Issues in scaling multimedia collaboration tools for remote instruction, Proc. IEEE Symp.

Computers and Communications , Alexandria, Egypt, pp. 42± 48, June 1995.

2. K. Maly, H. Abdel-W ahab, C. M. Overstreet, and C. Wild, Telelearning: A new paradigm for

interactive remote instruction, Int’ l. Distributed Conf. Teleteach ing, Madeira, Portugal, pp. 1 ± 14,

November 19 95.

3. K. Maly, H. Abdel-W ahab, C. M. Overstreet, C. Wild, A. Gupta, A Youssef, E. Stoica, and E.

Al-Shaer, Distance learning and training over intranets , IEEE Internet Computing , Vol. 1, No.

1, pp. 60± 71, February 19 97.

4. W. Richard Stevens, TCP/ IP Illustrated, Volum e 3: TCP for Transactions, HTTP, NNTP and

the UNIX Domain Protocols , Addison-Wesley, 19 96.

5. B. Whetten, T. Montgomery, and S. Kaplan, A high performance totally ordered multicast pro-

tocol, Theory and Practice in Distributed System s, Springer Verlag LCNS 938, 1994.

6. H. Abdel-W ahab and M. Feit, XTV: A Framework for sharing X window Clients in remote syn-

chronous collaboration, Proc. IEEE TriComm ’ 91: Communications for Distributed Applications

& System s, Chapel Hill, North Carolina, pp. 159± 167, April 19 91.

7. H. Abdel-W ahab and K. Jeffay, Issues, problems and solutions in sharing X clients on multiple

displays, Journal of Internetwork ing Research & Experience , pp. 1± 15, Vol. 5, No. 1, March

19 94.

8. S. Pejhan, A. Eleftheriad is, and D. Anastassiou, Distributed multicast address management in the

global Internet, IEEE Journal on Selected Areas in Communications , pp. 1445± 1455, October

19 95.

9. H. Abdel-W ahab, B. Kvande, S. Nanjangu d, O. Kim, and J. P. Favreau, Using Java for multime-

dia collaborative applicati ons, Proc. 3rd Int’ l. Workshop on Protocols for Multimedia Systems

(PROMS’ 96), Madrid, pp. 49± 62, October 19 96.

10. A. Nye, X. Protocol Reference Manual for Version 11, Volume 0, O’ Reilly and Associates, Inc.,

Sebastopol, California, 1989.

11. S. E. Deering and D. Cheriton, Multicast Routing in Internetworks and Extended LANs, ACM

Trans. on Computer Systems, Vol. 8, No. 2, pp. 85± 110, May 1990.

12. R. Steinmetz and K. Nahrstedt, Multim edia: Computing, Communications and Applications

Prentice-Hall, 1995.

Hussein Abdel-W ahab is a professor of computer science at Old Dominion University, an

adjunct professor of computer science at the University of North Carolina at Chapel Hill, and a

faculty member at the Information Technology Lab of the National Institute of Standards and Tech-

nology. His main research interests are collaborative desktop multimedia conferencing systems and

real-time distributed information sharing. He received a Ph.D. in computer communications from

the University of Waterloo.

Kurt Maly is a Kaufman professor and chair of computer science at Old Dominion University.

His research interests include modeling and simulation , very high performance network protocols,

reliability, interactive multimedia remote instruction, Internet resource access, and software main-

tenance. Maly received a Ph.D. in computer science from the Courant Institute of Mathemati cal

Sciences, New York University.

Emilia Stoica is a Ph.D. candidate in computer science at Old Dominion University. Her

research interests include synchronization of heterogeneous streams in multimedia systems, multime-

dia architectures and shared computer-supported workspaces. Stoica received an M.Sc. in computer

science from the Politechnical Institute of Bucharest.

Role of Multicastin g in Managing Interactive Multimedia Distance Learning System s 367

Alaa Yous sef is a Ph.D. candidate in computer science at Old Dominion University. His

research interests include quality of service support for distributed multimedia systems and computer-

supported collaborative work. Youssef received an M.Sc. in computer science from Alexandria Uni-

versity, Egypt.

