
1074 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

CoLab: A New Paradigm and Tool for
Collaboratively Browsing the Web

Guillermo de Jesús Hoyos-Rivera, Roberta Lima Gomes, Roberto Willrich, and Jean-Pierre Courtiat

Abstract—Widespread adoption of Web technologies, particu-
larly in professional and educational areas, has motivated new
research efforts with the objective of designing new interaction
mechanisms based on Web technologies. Within this framework,
collaborative Web browsing (cobrowsing) aims at extending cur-
rently available Web browsing capabilities in order to allow
several users to “browse together” on the Web. Such a brows-
ing paradigm can have many useful applications, for instance,
in e-learning, for collaboratively searching and retrieving docu-
ments, and for online assistance (helpdesk). A cobrowsing system
should provide all the facilities required for allowing users to
establish and release, in a very simple and flexible way, browsing
synchronization relations as well as interactions with continuous
media presentations embedded within Web pages. This paper
presents the design, modeling, and implementation of the cobrows-
ing system called CoLab. CoLab provides all the functionalities
required for allowing users to collaboratively browse the Web, and
a first experimental version of the tool has been implemented and
is fully operational.

Index Terms—Collaborative Web browsing, continuous media,
synchronization.

I. INTRODUCTION

THE World Wide Web (WWW) is a large distributed
collection of documents connected by hypertext links.

Web browsers are the basic tools for accessing and displaying
these documents. Although this collection of documents can be
concurrently accessed by several users, Web browsers are ba-
sically single-user tools. Accordingly, users are isolated when
browsing the Web since they have no way of sharing online
their browsing activities with other users. A great effort must be
made to allow a group of users to share their browsing activity
(for instance, the pages they have visited).

“Collaborative Web browsing” overcomes this problem by
allowing users to “browse together.” In this paper, we consider

Manuscript received October 3, 2005; revised May 1, 2006 and July
17, 2006. This work was supported in part by the European IST project
Lab@Future. The work of G. J. Hoyos-Rivera was supported in part by the
CONACyT under Grant 70360 and in part by a contract from the LAAS-CNRS
in France. The work of R. Gomes was supported by a grant from the CNPq,
Brazil. The work of R. Willrich was a cooperation between LAAS-CNRS and
UFSC funded by a grant from CAPES-COFECUB. This paper was recom-
mended by Guest Editor G. Cabri.

G. J. Hoyos-Rivera is with the Universidad Veracruzana, Xalapa 91000,
México (e-mail: ghoyos@uv.mx; ghoyosr@gmail.com).

R. L. Gomes is with the Federal University of Espirito Santo, 29060-900
Vitoria, ES, Brazil (e-mail: rgomes@inf.ufes.br).

R. Willrich is with the Computer Science Department, Federal University
of Santa Catarina, 88040-900 Florianopolis, SC, Brazil (e-mail: willrich@
inf.ufsc.br).

J.-P. Courtiat is with Laboratoire d’Analyse et d’Architecture des Systemes-
Centre National de la Recherche Scientifique (LAAS-CNRS), 31077 Toulouse
Cedex, France (e-mail: courtiat@laas.fr).

Digital Object Identifier 10.1109/TSMCA.2006.883173

a cobrowsing system as a tool for allowing users to browse
Web pages together in cobrowsing sessions while establishing/
releasing browsing synchronization relations as they wish. This
way to proceed opens new possibilities in collaborative work
since it breaks the currently existing isolation of users associ-
ated with Web browsing activities. As a result, collaboration
relations can dynamically emerge as users browse the Web, dis-
cover new material, and share it online with other users, adding
in this way a new dimension to the Web browsing paradigm.

Several application fields can take advantage of this new
collaborative Web browsing paradigm.

• In an e-learning environment, cobrowsing can be used
effectively in many situations to increase productivity.
For instance, teachers can present Web-based lectures to
multiple students; teachers and/or students can collectively
explore information on the Web (or in a digital library);
and to answer student’s questions, the teacher can co-
browse Web-based educational materials with a single
student as well as with a group of students.

• Cobrowsing permits implementing collaboration and
cooperation in digital information environments where
information seekers can interact with other users and ask
for help, and work with information in a group [1].

• In commercial environments, there are several applications
for cobrowsing [2]: to provide assistance when a user has
a question while browsing a company’s website, to show
to clients new items and promotions, to help filling Web-
based forms, etc.

• Cobrowsing allows collaborative Web browsing support of
materials during teleconferences, which would represent
a helpful support for presenters to synchronously show
information to attendees.

There are several requirements that a cobrowsing solution
must meet. We believe that one of the most important is to pro-
vide flexible capabilities for organizing cobrowsing sessions.
Such an organization defines which users are authorized to
follow a link and when and which user(s) should automatically
retrieve a given resource.

Most current cobrowsing solutions adopt two types of orga-
nization for a cobrowsing session: unmanaged or centralized.
In an unmanaged organization, any member can follow a link
while the other members will follow it automatically. This way
of working could turn the cobrowsing session uncontrollable
for groups of more than three users. Conversely, in a centralized
organization, each session has a leader who controls the brows-
ing actions. This organization type is only suitable for cobrows-
ing sessions where the browsing actions of the leader must be

1083-4427/$20.00 © 2006 IEEE

HOYOS-RIVERA et al.: CoLab: A NEW PARADIGM AND TOOL FOR COLLABORATIVELY BROWSING THE WEB 1075

followed by all the other session members (for instance, when
a teacher must present Web-based lectures to several students).

An alternative proposal for organization of cobrowsing ses-
sions allowing dynamic organization of session is presented in
this paper. Here, session members can dynamically reorganize
the cobrowsing session in workgroups. A workgroup is com-
posed by one or more session members whose browsing activi-
ties are synchronized. Workgroups can be dynamically created
and modified. Therefore, beyond the centralized organization
(where all the session members compose one workgroup), our
solution allows creating a permanently or temporally decentral-
ized organization. Workgroups can be temporally decentralized,
and later, some of them can be merged together. This approach
allows implementing the concept of “divide to conquer” [15],
which is very important for several applications.

In this paper, we propose a cobrowsing system called CoLab
[3]. This cobrowsing system is based on a simple and powerful
synchronization model supporting a dynamic organization of
a cobrowsing session. The proposed model offers a simple
mechanism allowing session members to create and release
synchronization relations among them.

This paper is organized as follows. In Section II, we present
the basic requirements of cobrowsing systems and identify
some currently implemented solutions and cobrowsing tools.
In Section III, we present the proposed cobrowsing syn-
chronization model and explain its main characteristics. In
Section IV, we describe the architecture of our system and
detail its main characteristics, giving an overview of the whole
specification. The operational behavior of CoLab is presented in
Section V. In Section VI, we present the current implementa-
tion of our platform, explaining its operation and presenting
some performance tests as well as an experiment with real
users. Finally, in Section VII, we draw some conclusions and
discuss future work.

II. COBROWSING REQUIREMENTS AND SOLUTIONS

A. Cobrowsing Requirements

In this section, we outline some basic requirements for a
system aiming at providing generic cobrowsing capabilities.

1) Session Management: A cobrowsing system must allow
the dynamic creation of cooperative multigroup multiuser co-
browsing sessions and provide facilities for the management of
groups of users in each session. The system should provide user
authentication, for controlling user access to a given session,
and authorization, for defining user capabilities, including what
kind of synchronization relations he is authorized to establish.

2) Cobrowsing Organization: Cobrowsing solutions must
emulate social rules and social protocols that allow controlling
collaborative work organization. For this reason, some kind of
floor control must be implemented for each cobrowsing session.
A cobrowsing solution should support different types of organi-
zation in order to be adapted to several types of cobrowsing ap-
plication scenarios. Moreover, as in any people’s organization,
the function of a session member can change, so the system
must be capable of coping with this kind of situations.

3) Web Browsing Synchronization: In a cooperative session,
any browsing action done by some user X must be replicated

as fast as possible in the browsers of all the users synchronized
with user X . Accordingly, each browser must implement a
shared workspace, following two operation modes, namely
1) strict “what you see is what I see” (WYSIWIS), where
the visuals are kept identical across all displays, or 2) relaxed
WYSIWIS, permitting windows to be of different sizes and by
reformatting the text to fit the display nicely [4]. Moreover,
in a shared Web page, the scrolling can be independent or
synchronized. Sometimes, synchronized scrolling can make the
collaboration easier when all users must have the same visual
(e.g., during the teacher’s expositions). However, independent
scrolling allows users to read the same Web page independently
in a collaborative work (e.g., during a collaborative information
retrieval).

4) Interactive and Temporal Presentations Synchronization:
Web pages can have interactive and/or continuous media
objects (videos, audios, synchronized multimedia integration
language presentations, etc.). In general, synchronization of
continuous media presentations at different destinations is not
required, but in the case of a cobrowsing system, this appears
as an important feature. Synchronized presentations are partic-
ularly useful in e-learning environments where, for instance,
the instructor can make use of video-based learning objects
embedded in Web pages and control the presentation seen by
the students in the same fashion as in traditional classes.

5) Ease of Use: A cobrowsing system should be oriented to
be used by nonexpert users. Accordingly, it should be simple
and easy-to-use, minimizing configuration efforts.

6) Platform Independence: In order to achieve portability, a
cobrowsing system should permit its use with general-purpose
Web browsers. In this way, a cobrowsing solution allows
that users can use their preferred browser in their habitual
operational system. GroupWeb [4] Albatross [5], Nestor [6],
and Co-Vitesse [7] propose new Web browsers implementing
synchronization mechanisms. This approach, however, forces
users to use a special Web browser instead of a general-
purpose one.

7) Extensibility: Extensible systems present the capability
of evolving in the future. In the case of a cobrowsing system, it
would be desirable to add new functionalities that enhance the
capabilities of the implemented tool.

8) Scalability: To be able to handle a great number of users
in cobrowsing sessions without generating excessive network
traffic or increasing too much response time. In other terms,
the performance of the system should be stable regarding the
number of users; a linear progression of the response time with
respect to the number of users is, however, acceptable.

B. Currently Implemented Solutions

Three basic approaches for implementing multiuser synchro-
nous cobrowsing systems based on standard Web browsers and
servers can be identified.

1) Application Sharing Tools: Such systems enable a user to
share his browser with other users during a cobrowsing session.
This approach provides strict WYSIWIS. However, chang-
ing dynamically the users’ synchronization relations requires
a great computing and organization effort. Moreover, most

1076 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

application sharing tools are platform specific, so users are
forced to use the same platform. Bandwidth and computer
power also play important roles since, normally, in application
sharing tools, the actual pixels forming the browser window
image are sent over the Internet [2], and on the client computer
the image is rebuilt, producing important transmission and
performance problems. One example of multiplatform sharing
application is virtual network computing [8]. However, using
such a solution for providing a cobrowsing service still leads to
the bandwidth and performance problems previously identified.

2) Cobrowsing Server-Based Architectures: In this ap-
proach, when a user clicks on a link pointing to a specific URL,
or when he resizes or scrolls a window in the browser, a browser
agent sends the corresponding request to the cobrowsing server.
The server then forwards this request to the browsers associated
with the users belonging to the same cobrowsing session. An
advantage of this approach is that it is not necessary to modify
the HTML code for allowing the system to track browsing
actions. However, a drawback is that the single cobrowsing
server may become a bottleneck leading to performance and
reliability limitations for widely distributed workgroups as well
as for big-sized groups [9]. Furthermore, a greater drawback of
this solution is that it requires the use of signed applets. Many
users prefer not to use signed applets due to security risks: they
work outside the security sandbox defined for standard applets,
so that they have full access to the resources of the system
where they are executed.

3) Proxy-Server-Based Architecture: In this approach, a
proxy server acts as an intermediate between websites and
session members. Any browsing action done by a user may
instantly be reflected, via the proxy, to the users synchronized
with him. Before sending the requested resources to the users’
browsers, the proxy server modifies the HTML code in order
to allow tracking future users’ browsing actions. Cobrowsing
solutions based on this approach are generally easy to deploy
because they do not require any plug-in or specific browser in-
stallations. The only configuration task that users must perform
is to configure their browser to point to the proxy server where
the cobrowsing service is provided. This approach is further-
more platform independent. Similar to the cobrowsing server
based approach presented above, the use of a single proxy may
become a bottleneck and lead to the same performance and
reliability problems. To overcome these problems, multiproxy
architectures based on distributed cooperating proxies can be
adopted. On the other side, the proxy implementation is com-
plex since it may become very difficult to automatically iden-
tify, and then modify on the fly, all the code definitions where
hyperlinks are specified, especially in Web pages containing
JavaScript or JScript code [10].

C. Cobrowsing Tools

In this section, we describe some of the main representa-
tive works in the domain of synchronous collaborative Web
browsing.

• CWB [10] is an extremely lightweight tool following a
cobrowsing server approach, where the cobrowsing server
(called Controller Program) is implemented as a Java

servlet. It is based on a polling architecture and a dynamic
HTML (HTML, CSS, and JavaScript) that avoids intru-
sive mechanisms based on proxies or events. In terms of
cobrowsing organization, a user can run as a master, as
a slave, as both, or as neither. One requirement incurred
by the exclusive use of JavaScript is that only content that
resides on the same Web server as the CWB scripts can be
cobrowsed [10]. Therefore, CWB seems to be inadequate
for cobrowsing arbitrary websites.

• CoBrowser [11] follows the cobrowsing server approach
and works on any platform with a graphical Web browser
supporting Java and JavaScript. CoBrowser implements
only unmanaged organization, i.e., any user can execute
a browsing action, so that the cobrowsing session may
become uncontrollable for groups composed of more than
three users.

• IMMEX Collaborative [12] includes cobrowsing on a
proxy-based approach that also works with any Web
browser supporting Java and JavaScript. In terms of ses-
sion organization, this system allows creating unmanaged
and token-passing-based cobrowsing sessions. In a token-
passing-based session, only the user that has the token can
browse. But any user can decide to take the token (no to-
ken retention mechanism is offered). Therefore, IMMEX
offers a centralized organization for cobrowsing sections
where leadership can be passed to any session member.

• CobWeb [13] is a cobrowsing system where the rules
governing the interactions of multiple users (the collabora-
tion protocol) can be externally specified and dynamically
modified. It operates with the Netscape browser (using its
Java applet capabilities). A CobWeb collaboration server
(Java application) also has to be installed and executed
on a Unix host to manage group membership. An impor-
tant drawback of this approach is that, when specifying
a protocol, it is necessary to give to the system many
parameters, including the set of URLs that are susceptible
to be synchronized, which leads to a lack of flexibility for
the provided cobrowsing service. Further, the specification
of the protocol seems to be a complex task.

• CoWeb [14] follows the proxy approach called CoWeb
server. This server translates HTML documents by replac-
ing HTML units through Java applets that enable coop-
eration. These applets add document-specific cooperative
functionality where functions like browsing through the
Web, pointing on figures, or filling input fields become co-
operative. This system offers different cooperation modes,
including the strict WYSIWIS and the relaxed WYSIWIS
(called same document). No floor control mechanism of
the cobrowsing session is mentioned. Moreover, the pro-
posed translation is not a trivial task.

• PROOF [9] is an extensible proxy-based framework
also implemented in Java, where specific application-
dependent functionalities have to be implemented in a
module to be installed in the proxy. The authors im-
plemented two main application modules for PROOF,
enabling two different forms of cooperative browsing,
namely: 1) loosely coupled cobrowsing, where each user
can browse the Web in an independent way, providing to

HOYOS-RIVERA et al.: CoLab: A NEW PARADIGM AND TOOL FOR COLLABORATIVELY BROWSING THE WEB 1077

Fig. 1. Basic notion of SDT.

all the users awareness of each others’ browsing activity,
as well as for users communication; and 2) master-slave
browsing, where the superuser of the workgroup assumes
the role of master and all the other users (slaves) connected
to the workgroup are forced to visit the same Web pages
visited by the master. In this cobrowsing system, a page
requested by a user is retrieved either from a cache or
from the original server specified in the requested URL.
In either case, the retrieved resource is parsed by the
application module and modified before sending it to the
browser as well as to the cache module in the proxy. This
proposal was an important source of inspiration when we
started developing our own approach.

In this paper, we will propose a new approach for solving
the cobrowsing problem, which, when compared to previous
systems, presents an important advantage: it provides a simple,
very flexible, and powerful synchronization model that allows
all the session members to dynamically create and release
synchronization relations with other users belonging to the
same session.

Furthermore, CoLab deals with the synchronization of em-
bedded audio/video presentations during a cobrowsing session.
At the present time, we did not find any cobrowsing application
offering such a synchronization scheme or the synchronization
of continuous media presentations embedded in Web pages.

III. SYNCHRONIZATION MODEL OF COLAB

In our proposal, we define a CoLab session as a set of users—
the session members—engaged in some common browsing
activity. In a CoLab session, one or more cobrowsing “work-
groups,” composed of one or more session members, can exist
at the same time. During the lifetime of a session, these work-
groups can be dynamically created and destroyed. Two work-
groups can be merged into a single one, and a single workgroup
can be decomposed into two different workgroups, all that
under the initiative of the users.

A. Synchronization Dependency Tree (SDT)

In order to represent the organization of the existing work-
groups in a CoLab session, we have chosen to use a data
structure called SDT. A typical SDT is shown in Fig. 1.

1) Definition 1: An SDT is a tree structure where nodes
represent the users belonging to a single workgroup, and
arcs represent the synchronization relations currently existing
among them. An arc oriented from node A to node B, where B
is the son of A, characterizes the fact that the browsing activities
of user B are currently synchronized to those of user A.

2) Definition 2: A single user is called an “asynchronous
user” if the node representing him in an SDT is the root node
(user A in Fig. 1). This means that this user can choose the

Fig. 2. SDT configuration scenarios.

Web pages he wants to visualize without any constraint. On
the other hand, a single user is called a “synchronous user” if
the node that represents him in an SDT belongs to a branch
of the tree. In this case, all the browsing activities of this user
are synchronized to those of the user at the root of the SDT he
belongs to (users B, C, and D in Fig. 1).

The tree structure is quite suitable for representing the or-
ganization of workgroups in CoLab since: 1) a single user can
get synchronized with only one user and 2) several users can
be synchronized at the same time with the same user. This is a
natural constraint due to the fact that, if we allow creating cross
synchronization relations, we will eventually have conflicts
between the interests of two or more users having control of
the browsing activity.

As we previously said, an SDT is a dynamic structure since
the proposed model allows the dynamic creation and release of
synchronization relations among connected users. The creation
of a synchronization relation leads to binding the Web brows-
ing of a given user to that of another user. Synchronization
relations are created and released by using some predefined
synchronization primitives. We can understand this approach as
an extension of a classical floor control mechanism, where, in
the presence of a synchronization relation, the synchronous user
looses his floor in favor of the user he gets synchronized with.

At any given moment during a session, depending on the
synchronization relations created and released among the con-
nected users, there can exist different numbers of SDTs. This
is called the SDT cardinality and represented by |SDT|. This
notion is presented in Fig. 2.

As can be clearly seen, we present here three possible
synchronization scenarios for users belonging to a session. In
the first case, there exists only one synchronization relation,
where user E is currently synchronized with user C, while the
other users are asynchronous, so |SDT| = 4. In the second case,
two new synchronization relations have been created in such
a way that now |SDT| = 2. Finally, in the third case, a new
synchronization relation has been created, and two others have
been released, taking us to a scenario where |SDT| = 3.

The minimal SDT cardinality of a session is 1 when all the
users belong to the same SDT, and the maximal cardinality is
equal to the number of connected users when all of them are
asynchronous, each one representing a single SDT.

B. Synchronization Primitives

CoLab proposes two main synchronization primitives allow-
ing the creation of synchronization relations between users,

1078 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

Fig. 3. “I_Follow_You” synchronization primitive.

namely: 1) “I_Follow_You” and 2) “You_Follow_Me.”1 In
order to avoid anarchical behaviors, the creation of synchro-
nization relations is subject to an authorization protocol.

The “I_Follow_You” primitive provides the user with
the possibility of requesting another user his authoriza-
tion to get synchronized with him. On the other hand, the
“You_Follow_Me” primitive provides a user with the possi-
bility of inviting another user to get synchronized with him.
Given that a single SDT node may have several children, the
“You_Follow_Me” primitive can be applied to a single user as
well as to a set of users.

As previously stated, whenever either of these two primitives
is applied, an authorization protocol is started. The user whom
the proposal was sent to is asked whether he wants to accept
it. If he accepts, the new synchronization relation is created,
and the SDTs of the concerned users are merged. Otherwise, no
modification is made.

Synchronization relations are released by using the
“I_Leave” primitive, which is unconditional: any user involved
in a synchronization relation can request it, and it will always
succeed. The result of the use of this primitive is that the SDT to
which the concerned users belong is split into two single SDTs.

Fig. 3 illustrates the session state before (left) and after
(right) the use of the “I_Follow_You” primitive. In the left side
of the figure, we can see that |SDT| = 2, where users A and C
are asynchronous users, user B is synchronized with user A,
and users D and E are synchronized with user C. After the
use of the “I_Follow_You” primitive from C to B, both SDTs
are merged and become a single SDT whose root is user A, so
since that moment the browsing activities of all the users of the
session will be synchronized with that of user A.

In Fig. 4, we use an extended state machine-style notation in
order to illustrate the general behavior of the synchronization
process using the “I_Follow_You” primitive from the point
of view of user i. The notation “j!message” represents the
sending of the message “message” to user j, and the notation
“j?message” represents the receiving of message “message”
from user j.

In this figure, the two main states in which user i can
be are “async(),” when the user is working asynchronously,

1Two other synchronization primitives have been defined to be used by users
having assumed privileged roles, namely: 1) “I_Spy_You,” which allows a
user to get his browser synchronized unconditionally with another user, and
2) “You_Join_Me,” which allows a user to “force” other user(s) to get his(their)
browser(s) synchronized with him. Their implementation is a future work and
is explained in Section VII.

and “sync(),” when the user is synchronized with another
user. When user i is in the “async()” state, he can use the
“I_Follow_You” primitive on user j. The preconditions to be
able to apply this primitive are: 1) user i is asynchronous, and
2) the tree structure is respected. Then, the system passes to
an intermediary state where invitation is expressed to the target
user and keeps waiting for an answer to the request: an accep-
tance, a refusal, or an abort. If an abort or a refusal is expressed,
user i gets back to the “async()” state, otherwise, the synchro-
nization relation is created, leading, therefore, to user i passing
to the “sync()” state. The behavior of the “You_Follow_Me”
primitive is symmetric to that of the “I_Follow_You” primitive,
so it will not be presented here.

The proposed synchronization model gives CoLab the pos-
sibility of supporting the “divide to conquer” concept. The
members of a CoLab session are organized into workgroups.
Besides, CoLab supports three different organizational struc-
tures (based on [15]).

1) Centralized organization, where decisions are made only
at the level of the session as a whole (normally imple-
mented by the cobrowsing systems previously presented).
It is more adapted to cobrowsing sessions having a leader
whose browsing actions must imperatively be followed
by the other members (for instance, when a teacher
presents a Web-based lecture to a group of students).

2) Decentralized organization composed of different work-
groups, where decisions are made independently in each
workgroup.

3) Temporarily decentralized organization, which starts out
with a decentralized structure and later reintegrates. It is
more adapted to cobrowsing sessions where the members
can browse independently in order to reach the objectives
more quickly (for instance, during a collaborative infor-
mation retrieval), and whenever they decide, they can get
their browsing activities synchronized.

C. Synchronization Model Verification

In order to check the consistency of the use of the proposed
synchronization primitives, we have formalized them by using
Petri nets. Then, we generated some cobrowsing scenarios and
verified that under any circumstance the complete model is
consistent.

As a first step, we defined a set of components representing
each of the possible behaviors dealing with the creation or
release of synchronization relations, as well as the synchroniza-
tion of the browsing activities executed by the users. Then, we
designed a “TCL” script to generate the Petri net and its initial
marking, and we used the software tool “TINA” [16] to get the
global reachability graph and the tool “CADP” [20] to obtain
an abstract view of this reachability graph (a quotient automa-
ton derived from the reachability graph that features only the
synchronization primitives; this automaton is observationally
equivalent to the reachability graph, see [19] for details). Fig. 5
shows the complete quotient automaton for a session with
two users. Other results are available for more users (up to
five users, due to the classical state space explosion problem)
but are not presented here.

HOYOS-RIVERA et al.: CoLab: A NEW PARADIGM AND TOOL FOR COLLABORATIVELY BROWSING THE WEB 1079

Fig. 4. Synchronization behavior.

Fig. 5. Complete quotient automaton for a session with two users.

As can be clearly seen, the connected users can be in
either asynchronous or synchronous state, and the browsing
activity synchronization behavior is consistent with the current
synchronization state of the users. The state 0 represents that
both users are asynchronous: as a consequence, anyone can
browse independently without producing any influence in the
browsing activity of any other user (transitions “Browse_1”
and “Browse_2”). If, for example, user 1 decides to get syn-
chronized with user 2 (transition “Follow_1_2”), the automaton
passes to intermediary state 3 waiting for an authorization,
abort, or cancel action. Whenever the creation of the syn-
chronization relation is accepted (transition “Accept_2_1”), the
automaton passes to state 2, where whenever user 2 executes a
browsing action, user 1 is forced to execute exactly the same
browsing action (transition “Browse_2” followed of transition
“Browse_1_2”). The part of the “Follow_2_1” is symmetric to
the “Follow_1_2,” so it will not be explained.

We have analyzed several scenarios similar to the one pre-
sented in Fig. 5, and we have been able to formally verify that
the synchronization model is fully consistent.

IV. ARCHITECTURE OF COLAB

In Fig. 6, we present the architecture of our cobrowsing
system in which we can identify the two main components,
namely: 1) the CoLab “proxy server” and 2) the CoLab “client.”

Fig. 6. Collaborative web browsing architecture.

A. CoLab Proxy Server

The CoLab proxy server acts as a mediator between the
website (where the requested Web pages are hosted) and the
users of our system in order to manage cobrowsing sessions.
This proxy server is composed of four main modules (Fig. 6),
namely: 1) a “session manager”; 2) a “broker”; 3) a “browsing
manager”; and 4) a “MediaSync manager.” Additionally, it has
an “integration manager.”

The “session manager” is in charge of managing the co-
browsing session itself. This module offers the authentication
and authorization functions based on the cobrowsing session
specification defining the default initial page, the available
roles2 and their associated passwords, and the eventual existing
privileges that can be associated with each of them.

The main component of the “session manager” is the “syn-
chronization module,” which is in charge of treating all the
synchronization actions and guaranteeing the overall consis-
tency of the synchronization state. Whenever a synchronization
relation is created, the involved users’ browsing activities get
synchronized as well as the playing of continuous media (even-
tually embedded in the website).

2Access control to CoLab sessions is made in a role-based basis. Roles are
to be used in the future as a way to allow some users to have privileges on other
users when creating synchronization relations. This is the case of the privileged
synchronization primitives “I_Spy_You” and “You_Join_Me.”

1080 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

The “broker” receives any browsing request from the user
and asks the “session manager” to verify whether the request
should be satisfied. This decision depends on certain conditions,
such as the current synchronization state of the user or some
other condition specified in an additional module integrated to
CoLab (e.g., an access control module).

The “browsing manager” is in charge of all the tasks related
to the retrieval of the resources requested by the users. This
includes three main components that interact in order to satisfy
incoming browsing requests.

1) The “retrieval” module is responsible for retrieving every
requested resource. They can be retrieved directly from
the Web server specified in the requested URL or from the
cache module. In the first case, the retrieval module sends
the Web page to the translation module in order to modify
it before sending the response to the user’s browser, as
well as to the cache module.

2) The “translator” module is responsible for modifying on
the fly every retrieved Web page. This is necessary to
allow our system to track the users’ browsing actions.
This translation is also required to include the neces-
sary controls for synchronizing the continuous media
presentations eventually embedded in these Web pages.
The translation consists mainly of adding some control
parameters specific to CoLab to each hyperlink definition
in the retrieved Web page. When the Web page has
embedded media presentations, this module modifies the
HTML code in order to detect plug-in state changes and
to notify this to CoLab.

3) The “cache” module corresponds to the implementation
of a basic cache system, which is mainly used, but not
only, for satisfying requests coming from synchronous
users in order to improve the performance of the system.
We assume that when a synchronous user browses, the
requested resource has been previously retrieved by the
asynchronous user, so it is faster to retrieve the already
translated version of the Web resource directly from the
cache rather than retrieving it from the original server and
retranslating it at each time.

The “session manager” is also responsible for interacting
with the “integration manager” that is intended to provide an
API allowing CoLab to be extended with new functionali-
ties, such as an access control system, or to be integrated to
other collaborative tools or integration environments, such as
LEICA [17].

The “MediaSync manager” takes charge of all the tasks
related to the presentation control of the eventual continuous
media presentations embedded in Web pages. Its main function
is to guarantee the synchronization of audio/video presentations
(streamed or downloaded) by forcing the same presentation
state in all synchronous users’ plug-in. As detailed in [18], this
module maintains the current state of each continuous media
presentation in the session based on “state change” messages
sent by the “media controller” and controls the presentations
states by sending “playback control” messages to the synchro-
nous users.

Fig. 7. Synchronization of the browsing and media presentation actions.

B. CoLab Client

The “browsing controller” and the “media controller” are the
two main modules present at the client side (see Fig. 6).

The “browsing controller” is the component in charge of es-
tablishing a connection with the CoLab proxy server. Through
this connection, the users’ browsers receive the commands to
display Web pages whenever they are synchronized with an-
other user. The “browsing controller” also provides users with
all synchronization controls allowing creating and releasing
synchronization relations.

The “media controller” controls and synchronizes the contin-
uous media presentation in the current Web page for all users
of a workgroup. This module does the following:

• records the state of each audio/video presentation;
• captures state changes of the continuous media presenta-

tions, treats them locally, and then informs them to the
“MediaSync manager”;

• receives playback control messages from the “MediaSync
manager” and executes the playback control.

The “media controller” prevents synchronous users from ex-
ecuting any playback control action. In this case, the playback
control is done by the “MediaSync manager” via “playback
control” messages.

V. OPERATIONAL BEHAVIOR OF COLAB

In order to graphically illustrate the operational behavior of
our proposal, we present in Fig. 7 the case of a typical browsing
action performed by an asynchronous user and the resulting
synchronization with another user.

The first step consists of the request of a resource expressed
by a user (1), which is treated directly by the “broker.” Next, the
“broker” contacts the “session manager” to ask it whether the
user can retrieve the requested resource (2). If so, the “broker”
sends the request to the “retriever” (3), which asks the “cache
module” if that resource is already in the cache (4). Let us
assume that this is not the case, so the resource is retrieved

HOYOS-RIVERA et al.: CoLab: A NEW PARADIGM AND TOOL FOR COLLABORATIVELY BROWSING THE WEB 1081

directly from the original Web server (5–6), and if it is identified
as an HTML resource, it is sent to the “translator” in order to
be modified (7). Once the resource has been translated, it is sent
back to the “retriever” (8) and also to the “cache module” for
storing purposes (8–9). The “retriever” then sends the resource
back to the “broker” (10), which sends it to the user who has
made the request (11).

Once the previous steps have been completed, the “broker”
asks the “session manager” to synchronize this browsing action
for all the users who are currently synchronized with the user
who has just executed the browsing action (12). Then, the
“session manager” sends a message to the browser of every
synchronous user present in the same workgroup (13). Each
browser will then separately make its own request for the indi-
cated resource (14), which will be sent again to the “broker.”
The “broker” asks the “retriever” (15) for the retrieval of
the resource, which itself asks the “cache module” to verify
whether the resource is cached (16). Since the resource has
already been stored in the cache, and this browsing action is
the consequence of the synchronization of a browsing action,
it is retrieved directly from the cache (17) and sent back to the
“retriever” (18), which sends it back to the “broker” (19), finally
satisfying the user’s request (20).

Fig. 7 also shows the behavior of the playback control
of continuous media presentations. For instance, once a Web
page containing a continuous media presentation is loaded, if
the asynchronous user clicks the “play” button, the “media
controller” sends the state change (21) to the “MediaSync
manager.” The MediaSync manager module updates the presen-
tation state and sends all users the “prepareToPlay” playback
control (22 and 23). When this module receives a “state change”
message from all users (24 and 25) indicating the “ready-
ToPlay” state, it sends all users the “play” playback control
(26 and 27).

VI. COLAB’S CURRENT IMPLEMENTATION

At the present time, we have developed CoLab version 2.0,
which implements almost all the concepts presented in this
paper. The implementation is fully operational and has been
tested under real operational conditions. This section presents
some implementation aspects of this prototype.

A. CoLab Proxy Server and CoLab Client

It has been implemented on a PC with the Linux RedHat
7.2 OS. The software choice for developing CoLab consists
of the Java 2 SDK Standard Edition release 1.4.2_09, Jakarta
Tomcat release 3.3.1a for the Servlets/JSP technology, and
JSDT release 2.0 for the CoLab’s internal communication
facilities.

On the browser side, the only technical requirement is that it
supports Java applets, and that it can implement the “automatic
proxy configuration” (PAC) facility.

In the case of the “media controller” module, at the present
time, it only works with the Netscape browser and RealPlayer.
RealPlayer was chosen since it implements an access API that
provides methods to set and retrieve presentation attributes,
control clip playback, and handle user interactions.

Fig. 8. CoLab’s login page.

B. CoLab Current Operational Implementation

In order to use CoLab, the first step to be accomplished is
to configure the available cobrowsing sessions. Configuration
is done via an extensible markup language (XML) file that con-
tains the specification of the default initial page, the available
roles and their associated passwords, and the eventual existing
privileges that can be associated with each of them. This file is
interpreted by the server when it is started.

An administrator can configure new sessions as well as delete
existing ones through a Web application. This is done through
a Web service interface defined in the CoLab proxy server.
When creating a session, CoLab automatically generates the
configuration file and stores it. On the browser side, users must
only configure the PAC facility in order to make the browser
point to the URL where the configuration file is located. This
file contains a JavaScript program that allows dynamically
redirecting browsing requests depending on certain criteria. It is
actually through this facility that we are able to use any general-
purpose Web browser in our platform.

When accessing CoLab, the first step users must perform is
to choose a session from those available, choose the role he
wants to play, enter the password associated with this role, and
select a username, through which he will be identified within
the session. The login screen of CoLab is presented in Fig. 8.

Once the user has been authenticated, a new browser window
opens: the one where the cobrowsing activity will take place.
The other browser window can be used by the user for browsing
the Web outside any CoLab session (i.e., no synchronization is
possible in this window).

The CoLab session window has two frames: one frame
contains the “control frame” presenting browsing and synchro-
nization controls as well as the users’ awareness information,
and the other frame contains the “Browsing Frame,” where

1082 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

Fig. 9. CoLab’s control frame.

the browsed pages will be displayed. A screen capture of the
control frame is presented in Fig. 9.

The control frame is composed of a GUI containing all the
components that make collaborative Web browsing possible.
On the left side (presented at the top of Fig. 9) are the “browsing
controls,” which are equivalent to those of a typical browser, but
here the “Home” button will load the default initial Web page
for the session. On the right side (presented at the bottom of
Fig. 9) are the “user awareness and synchronization controls.”
The following are presented: the connected users and their
current synchronization state, and the available synchronization
controls associated with the synchronization primitives. Here,
we can see which users are currently present in the session,
and which are the existing synchronization relations among
them. For example, in the image presented in the last figure,
we can see that there are four users currently logged in the
session, namely: 1) “ghoyos”; 2) “rgomes”; 3) “valentim”;
and 4) “courtiat”; and we can also see that user “courtiat” is
currently synchronized with user “valentim.” Concerning the
synchronization controls, we can see that they are divided in
two sections, namely: 1) “user synchronization” and 2) “role
synchronization.” The first one contains the buttons represent-
ing the synchronization primitives that can be applied to single
users, while the second only presents buttons corresponding to
the synchronization primitives that can be applied to groups of
users playing the same role.

C. Prototype Limitations

The current implementation, which supports most of the pro-
posed functionalities, has been developed and is currently op-
erational. We have currently implemented the “I_Follow_You,”
“You_Follow_Me,” and “I_Leave” synchronization primitives,
allowing the basic synchronization operations and sufficient for
implementing most cobrowsing sessions.

Regarding the synchronization of continuous media presen-
tations, the concerned plug-ins used for playback are platform
dependent and are external to the browser. Accordingly, in
order to be able to coordinate their activities, plug-ins must
dispose of an API offering all the necessary functions to control
continuous media playback and to handle related events. How-

ever, as each plug-in might present its own API specification,
CoLab should implement a specific solution for each plug-in.
The current version of CoLab supports the playback control of
embedded continuous media presentations only for Netscape
browser and RealPlayer.

In the current version of CoLab, the synchronization of con-
tinuous media presentations always happens in the presentation
start or in the presentation resume after a playback control (after
a pause, stop, seek, fast-forward, or rewind). Therefore, after
the start of the synchronized presentation, the synchronization
can get lost due to, for instance, network congestion factors.
This problem does not have a trivial solution. In [18], we survey
some difficulties concerning the synchronization of collabora-
tive continuous media presentations.

D. Experimental Evaluations

We carried out two experimental evaluations of the CoLab
prototype, namely: 1) the performance evaluation and 2) an
informal test of the prototype with real users.

The goal of the first experiment was to evaluate the CoLab
performance for implementing the cobrowsing activity. For
that purpose, we have chosen a set of websites distributed
all over the world and have then executed an application that
simulates a user who gets connected to a specific session and
then gets synchronized with a predefined user (in this setting,
the asynchronous user is a person that makes some browsing
actions). We made several measurements, considering synchro-
nous users groups with sizes from 1 to 165 synchronous users.
All the tests have been performed using nondedicated work-
stations connected through a 100-Mb/s switched LAN. Future
developments will specifically address the quality-of-service
(QoS) issue within the context of WAN/LAN networks. The
following average results have been obtained.

As we can easily see in Fig. 10, the performance of CoLab is
quite satisfactory, since, in the worst case with 165 synchronous
users in a group, the average retrieval time of a Web page is
about 1.2 s.

For using CoLab, there is no a priori assumption about the
underlying communication network, with the exception that it
should offer limited delay to ensure an adequate level of QoS.

HOYOS-RIVERA et al.: CoLab: A NEW PARADIGM AND TOOL FOR COLLABORATIVELY BROWSING THE WEB 1083

Fig. 10. Performance test of CoLab.

This is an important issue since CoLab is a synchronous collab-
oration tool, and large delays may hinder users’ coordination.

In terms of bandwidth consumption, we claim that there is
practically no overload associated with the use of synchro-
nization primitives. The only information exchanged between
the connected clients and the CoLab proxy server consists of
short messages associated with the synchronization protocol
and the strings containing the URLs to be retrieved to achieve
the synchronization of the browsing activities. Furthermore, for
synchronous users, resources are directly retrieved from the
cache system, reducing network overload.

The second experiment aimed at driving informal testing of
the prototype with real users. The main goal of this test is to
know if the synchronization mechanism of CoLab ensures that
a real cobrowsing session can be accomplished as natural as
possible (with minimal effort and confusion). Moreover, we
wanted to find out possible malfunctions and ensure trouble-
free operation.

The subjects of this test were six computer science un-
dergraduate students at Federal University of Espirito Santo
(UFES), Vitoria, ES, Brazil. The task to be accomplished by the
subjects was to choose, via cobrowsing, the website containing
the best tutorial on computer network topologies from a list
of predefined websites. While the CoLab proxy server was in-
stalled at Laboratoire d’Analyse et d’Architecture des Systemes
(LAAS), Toulouse Cedex, France, all the subjects were in the
same room at UFES, each one running a CoLab client in distinct
computers.

We controlled the procedure executed by the subjects while
accomplishing the imposed task. Our goal was to verify that
CoLab effectively supports the implementation of the concept
of “divide to conquer.” During the execution of the task, all
synchronization operations realized by each workgroup were
registered and some of them are presented in Fig. 11.

The procedure adopted for this informal test started by a brief
introduction to the CoLab tool and to the test itself. Then, the
following steps were accomplished:

Step I: The group was divided into three workgroups com-
posed of two members. Each workgroup should
cobrowse the list of websites in order to analyze
the presentation quality regarding one specific net-

Fig. 11. SDTs generated during the prototype testing.

work topology (i.e., initially, each group was in
charge of a different network topology). The first
frame in Fig. 11 schematizes the use of different
synchronization primitives by the members of one
workgroup. Actually, we had the same synchro-
nization patterns for the three workgroups: users
have interchangeably used the different synchro-
nization primitives, several times, so as to alternate
the synchronization relationship between them.
This change of synchronization control is possible
thanks to the available synchronization primitives
addressed to other members. Note that this change
is possible only if the actual asynchronous member
accept this change. This frequent changing of syn-
chronization control allowed the two members to
cobrowse in a cooperative fashion.

Step II: After finishing Step I, the first two groups were
merged into a new group, responsible now for
choosing its preferred sites regarding the two
topologies initially analyzed by each one of the
groups. The third workgroup was temporally dis-
connected from the session. As presented in the
second frame of Fig. 11, in this step, users de-
cided to organize themselves as if they were two
workgroups. Then, the asynchronous members of
each workgroup (A and C) have interchangeably
used the synchronization primitives. This way, they
could alternate the guiding of the browsing activity
while they presented the analysis of the respective
workgroup about the browsed Web sites (B and D
stayed as observers).

Step III: Finally, all members joined together in order to
choose the best tutorial covering the different net-
work topologies. On the bottom of Fig. 11, we
present some snapshots of the SDT evolution dur-
ing the cobrowsing activity. As illustrated by this
SDT evolution, the member A was in charge of
presenting the analysis resulting from the previous
step to the members of the third workgroup (which
did not participate in Step II). A controls the conav-
igation at the beginning of this step, but then one of

1084 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

the members of the third workgroup (F) take the
control during a period of time in order to expose
the analysis of this workgroup. In the end of this
step, member A takes control to conclude the task.

Regarding the synchronization operations realized by the
workgroup members, we can conclude that the prototype effec-
tively allowed the dynamic creation and merging of workgroups
and, therefore, provided means for “divide to conquer.”

After completing the task, the subjects filled out a question-
naire to rate various aspects related with the effectiveness of the
prototype. Moreover, members of the group were interviewed
about the experiment.

From the questionnaires and interview, we could confirm that
the prototype allowed to adequately accomplish the task. The
group considered that the interface of CoLab is simple and easy
to use. Some minor problems were pointed out (which we will
take in consideration in the next version of CoLab).

The synchronization primitives were considered relatively
easy to use and intuitive. The group considered that CoLab
implements a great part of functions necessary for cobrows-
ing. Some students pointed out that the use of two primitives
(“I_Leave” followed by “You_Follow_Me”) is not very nat-
ural when a synchronous member of a workgroup desires to
become the asynchronous member of this workgroup (i.e., the
user wants to take the browsing control of the workgroup he
belongs to). As a result, we will include in the CoLab interface
a button allowing such a synchronization request (representing
a composition of the actual synchronization operators of our
synchronization model).

VII. CONCLUSION AND FUTURE WORK

In this paper, we have defined a general-purpose proxy-based
collaborative Web browsing system called CoLab. We claim
that this system gives the users a great flexibility for establish-
ing collaboration relations while browsing, creating in this way
an environment where collaboration is greatly facilitated. Our
model meets most of the basic requirements for a system aimed
at supporting generic synchronous cobrowsing applications.

1) Session Management: CoLab permits the dynamic cre-
ation of cooperative multigroup multiuser sessions and
manages the list of users in each session. Authenticated
users can join or leave a session at any time. Several user
roles can be associated with a session.

2) Synchronization Management: CoLab offers the possibil-
ity of easily creating and releasing browsing synchroniza-
tion relations. Moreover, it provides a new paradigm since
a cobrowsing session can adopt either a centralized, a
decentralized, or a temporally decentralized organization.
The capacity of creating cobrowsing sessions composed
of workgroups that can at any time be reorganized dynam-
ically turns CoLab into a very flexible and useful tool.

3) Web Browsing Synchronization: CoLab implements only
relaxed WYSIWIS. Moreover, in a shared Web page, the
scrolling is independent, allowing users to look at the
same Web page independently in a collaborative work.

4) Interactive and Temporal Presentations Synchronization:
CoLab allows synchronization of continuous media pre-
sentations. The current prototype supports the playback
control of embedded continuous media presentations only
for the Netscape browser and RealPlayer.

5) Ease of Use: CoLab is a platform oriented to nonex-
pert users because it requires neither plug-in nor special
browser installations. Users must only configure their
browser load the CoLab’s PAC file.

6) Platform Independence: CoLab can be used with any
standard Web browser. The only requirement is that it
supports Java and the PAC facility.

7) Extensibility: Extensions can easily be brought to CoLab
thanks to its integration API.

8) Scalability: One potential problem of the current CoLab
architecture is related to its scalability, in particular at
the level of the proxy server. In the current implemen-
tation, we consider a centralized implementation and
have shown that, at least up to 165 synchronous users,
the average retrieval time of a Web page is linear with
respect to the number of users in a workgroup. Further
studies dealing with the distribution of the proxy server
to balance the workload among distributed servers will
be initiated after a careful analysis of the performance and
scalability issues of the current architecture.

CoLab follows that the proxy server architecture and the
proxy program are complex: it is not a trivial task to detect all
of the ways in which the HTML and scripts in an arbitrarily
shared Web page might create hyperlinks. We will then study
the possibility of treating every kind of resource in a format
other than HTML (i.e., JavaScript, JScript, Flash, etc.).

In the future, we will keep working on the implementation
of all the features of the proposed model (i.e., the “I_Spy_You”
and “You_Join_Me” synchronization primitives, roles, and
privileges). Roles are intended to be used to group users with
similar characteristics, allowing us to assign special privileges
to certain users having assumed a given role on other users
having assumed another role. In this way, we can allow users
having assumed a privileged role to apply any of the two
new unconditional synchronization operators (“I_Spy_You”
and “You_Join_Me”) on other users. We will work as well
in identifying new opportunity areas where we can improve
CoLab’s capabilities, as the possibility of adding annotations
to the browsed resources in order to facilitate the information
exchange among the users. We have already started the
implementation of the “integration” API, identifying possible
requirements for integrating CoLab with other collaborative
systems and tools, as well as to add new functionalities to
CoLab. In the particular case of the integration of CoLab to
other collaborative tools, we are currently working on the in-
tegration of CoLab to a multiroom Chat based on LEICA [21],
an environment for integrating collaborative applications in a
transparent way.

Another subject on which we will start working soon is
the implementation of the distributed version of our platform
(distributed proxies instead of a single proxy) in order to avoid
any bottlenecks in the presence of heavy workload. Moreover,

HOYOS-RIVERA et al.: CoLab: A NEW PARADIGM AND TOOL FOR COLLABORATIVELY BROWSING THE WEB 1085

other continuous media presentation plug-ins (in addition to
RealPlayer) will be investigated, and those providing APIs
allowing to set and retrieve presentation attributes will be
incorporated in the CoLab system. Finally, complementary
synchronization semantics will be studied.

ACKNOWLEDGMENT

The authors would like to thank all the computer science
undergraduate students from Federal University of Espirito
Santo (UFES), Vitoria, ES, Brazil, who participated in testing
the CoLab prototype.

REFERENCES

[1] N. C. Romano, Jr., D. Roussinov, J. F. Nunamaker, and H. Chen, “Col-
laborative information retrieval environment: Integration of information
retrieval with group support systems,” in Proc. 32nd Hawaii Int. Conf.
Syst. Sci., 1999, vol. 1, p. 1053.

[2] J. K. Lin. (2005). An Insider’s Guide to Today’s Cobrowsing Technolo-
gies, white paper of PageShare Technologies Inc. [Online]. Available:
http://www.pageshare.com

[3] G. J. Hoyos-Rivera, R. L. Gomes, and J. P. Courtiat, “A flexible architec-
ture for collaborative browsing,” in Proc. 11th IEEE WetICE, Workshop
Web-Based Infrastructures and Coordination Architectures Collaborative
Enterprises, Pittsburgh, PA, 2002, pp. 164–169.

[4] S. Greenberg and M. Roseman, “GroupWeb: A WWW browser as real
time groupware,” in Proc. CHI Companion, Vancouver, BC, Canada,
1996, pp. 271–272.

[5] P.-J. Yeh, B.-H. Chen, M.-C. Lai, and S.-M. Yuan, “Synchronous navi-
gation control for distance learning on the Web,” in Proc. 5th Int. World
Wide Web Conf., May 1996, pp. 1207–1218.

[6] R. Zeiliger, ”Supporting constructive navigation of Web space,” in Proc.
Workshop in Personalized and Social Navigat. Inf. Space, K. Hook,
D. Benyon, and A. Munro, Eds., Stockholm, Sweden, Mar. 16–17, 1998,
SICS Tech. Rep. T98:02, pp. 91–101.

[7] Y. Laurillau, “Synchronous collaborative navigation on the WWW,”
in Proc. ACM CHI, pp. 209–308.

[8] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
network computing,” IEEE Internet Comput., vol. 2, no. 1, pp. 33–38,
Jan./Feb. 1998.

[9] G. Cabri, L. Leonardi, and F. Zambonelli, “A proxy-based framework to
support synchronous cooperation on the Web,” Softw., Pract. Exp., vol. 29,
no. 14, pp. 1241–1263, Dec. 1999.

[10] A. W. Esenther, “Instant co-browsing: Lightweight real-time collaborative
Web browsing,” in Proc. 11th Int. WWW Conf., Honolulu, HI, 2002,
pp. 107–114.

[11] K. Maly, M. Zubair, and L. Li, “CoBrowser: Surfing the Web using a
standard browser,” in Proc. World Conf. Educational Multimedia, Hyper-
media Telecommun., 2001, vol. 2001, pp. 1220–1225.

[12] L. Gerosa, A. Giordani, M. Ronchetti, A. Soller, and R. Stevens, “Sym-
metric synchronous collaborative navigation,” in Proc. IADIS Int. Conf.
WWW/Internet, 2004, pp. 748–754.

[13] D. Stoots, J. Prins, and L. Nyland, “CobWeb: Visual design of collab-
oration protocols for dynamic group Web browsing,” in Proc. Visual
Comput. (Distributed Multimedia), San Francisco, CA, Sep. 26–28, 2002,
pp. 595–598.

[14] S. Jacobs, M. Gebhardt, S. Kethers, and W. Rzasa, “Filling HTML forms
simultaneously: CoWeb—Architecture and functionality,” in Proc. 5th
Int. World Wide Web Conf., May 1996, pp. 1385–1395. [Online]. Avail-
able: http://www5conf.inria.fr/fich_html/papers/P43/Overview.html

[15] N. Siggelkow and D. Levinthal, “Temporarily divide to conquer: Central-
ized, decentralized,” Org. Sci., vol. 14, no. 6, pp. 650–669, Nov. 2003.

[16] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA-construction
of abstract state spaces for petri nets and time petri nets,” Int. J. Production
Res., vol. 42, no. 14, pp. 2741–2756, 2004.

[17] R. L. Gomes, G. J. Hoyos-Rivera, and J. P. Courtiat, “Loosely-coupled
integration of CSCW systems,” in Proc. 5th IFIP Int. Conf. DAIS, Athens,
Greece, Jun. 2005, vol. 3543, pp. 38–49.

[18] G. J. Hoyos-Rivera, R. L. Gomes, J. P. Courtiat, and R. Willrich, “Col-
laborative Web browsing tool supporting audio/video interactive presen-
tation,” in Proc. IEEE 14th Int. Workshops WetICE, Linkoping, Sweden,
2005, pp. 78–83.

[19] R. Milner, A Calculus of Communicating Systems, vol. 92. New York:
Springer-Verlag, 1980.

[20] Construction and Analysis of Distributed Processes. (2006). [Online].
Available: http://www.inrialpes.fr/vasy/cadp/

[21] G. J. Hoyos-Rivera, R. L. Gomes, and J. P. Courtiat, “CoLab:
Co-navigation sur le Web,” in Proc. NOuvelles TEchnologies de la
REpartition (NOTERE), Toulouse, France, Jun. 2006. in press.

Guillermo de Jesús Hoyos-Rivera received the B.S.
degree in informatics and the M.Sc. degree in artifi-
cial intelligence from the Universidad Veracruzana,
Xalapa, México, in 1992 and 1997, respectively, and
the Ph.D. degree from the Université Paul Sabatier,
Toulouse, France, in 2005. In 1999–2000, he headed
the Artificial Intelligence M.Sc. program with the
Universidad Veracruzana.

Since 1997, he has been a full-time Researcher
with the Universidad Veracruzana. His research in-
terests are Web technologies, parallel and distributed

computing, computer networks, and software agents.

Roberta Lima Gomes received the B.Sc. degree in
computer engineering from the Federal University
of Espírito Santo (UFES), Vitoria, ES, Brazil, in
1999, the M.Sc. degree from the Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil, in 2001,
and the Ph.D. degree from Université Paul Sabatier,
Toulouse, France, in 2006.

She is currently a Professor with the Computer
Science Department, UFES. Her research interests
lie in computer-supported cooperative work systems,
distributed systems, and multimedia communication.

Roberto Willrich received the B.S. and M.Sc. de-
grees in electrical engineering from the Federal
University of Santa Catarina, Florianopolis, SC,
Brazil, in 1988 and 1991, respectively, and the Ph.D.
degree from Université Paul Sabatier, Toulouse,
France, in 1996.

He is currently a Professor of computer sci-
ence with the Federal University of Santa Catarina.
He is currently in a postdoctoral position at
the Laboratoire d’Analyse et d’Architecture des
Systemes-Centre National de la Recherche Scien-

tifique (LAAS-CNRS) supported by a CAPES-COFECUB (Brazil) grant. His
research interests are in the areas of multimedia computing and communication,
quality-of-service, and Web technologies.

Jean-Pierre Courtiat received the degree in
computer science from the École Nationale Supé-
rieure d’Électronique, d’Électrotechnique, d’Infor-
matique, d’Hydraulique, et de Télécommunications,
Toulouse, France, in 1973, and the Ph.D. degree and
the “Doctorat d’Etat” degree in computer science
from the University of Toulouse, Toulouse, in 1976
and 1986, respectively.

From 1973 to 1976, he was a Researcher with
the Laboratoire d’Analyse et d’Architecture des Sys-
temes, Centre National de la Recherche Scientifique

(LAAS-CNRS). From 1976 to 1980, he was a Professor of computer science
with the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. In 1980, he
returned to LAAS as a “Chargé de recherche au CNRS” and then a “Directeur
de recherche au CNRS.” His research interests include design of protocols;
definition and application of formal methods to the specification, verification,
and testing of protocols; distributed systems; and multimedia applications. He
contributes to several researches and has also participated in standardization
activities, as an expert of AFNOR and ISO.

Dr. Courtiat is a member of the Association for Computing Machinery.

